Cargando…
Magnetic resonance spectroscopy evidence for declining gliosis in MS patients treated with ocrelizumab versus interferon beta-1a
BACKGROUND: Magnetic resonance spectroscopy quantitatively monitors biomarkers of neuron-myelin coupling (N-acetylaspartate (NAA)), and inflammation (total creatine (tCr), total choline (tCho), myo-inositol (mI)) in the brain. OBJECTIVE: This study aims to investigate how ocrelizumab and interferon...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796216/ https://www.ncbi.nlm.nih.gov/pubmed/31662881 http://dx.doi.org/10.1177/2055217319879952 |
Sumario: | BACKGROUND: Magnetic resonance spectroscopy quantitatively monitors biomarkers of neuron-myelin coupling (N-acetylaspartate (NAA)), and inflammation (total creatine (tCr), total choline (tCho), myo-inositol (mI)) in the brain. OBJECTIVE: This study aims to investigate how ocrelizumab and interferon beta-1a differentially affects imaging biomarkers of neuronal-myelin coupling and inflammation in patients with relapsing multiple sclerosis (MS). METHODS: Forty patients with relapsing MS randomized to either treatment were scanned at 3T at baseline and weeks 24, 48, and 96 follow-up. Twenty-four healthy controls were scanned at weeks 0, 48, and 96. NAA, tCr, tCho, mI, and NAA/tCr were measured in a single large supra-ventricular voxel. RESULTS: There was a time × treatment interaction in NAA/tCr (p = 0.04), primarily driven by opposing tCr trends between treatment groups after 48 weeks of treatment. Patients treated with ocrelizumab showed a possible decline in mI after week 48 week, and stable tCr and tCho levels. Conversely, the interferon beta-1a treated group showed possible increases in mI, tCr, and tCho over 96 weeks. CONCLUSIONS: Results from this exploratory study suggest that over 2 years, ocrelizumab reduces gliosis compared with interferon beta-1a, demonstrated by declining ml, and stable tCr and tCho. Ocrelizumab may improve the physiologic milieu by decreasing neurotoxic factors that are generated by inflammatory processes. |
---|