Cargando…

Intradermal vaccination prevents anti-MOG autoimmune encephalomyelitis in macaques

BACKGROUND: Autoimmune demyelinating diseases (ADD) are a major cause of neurological disability due to autoreactive cellular and humoral immune responses against brain antigens. A cure for chronic ADD could be obtained by appropriate immunomodulation. METHODS: We implemented a preclinical scheme to...

Descripción completa

Detalles Bibliográficos
Autores principales: Fovet, Claire-Maëlle, Stimmer, Lev, Contreras, Vanessa, Horellou, Philippe, Hubert, Audrey, Seddiki, Nabila, Chapon, Catherine, Tricot, Sabine, Leroy, Carole, Flament, Julien, Massonneau, Julie, Tchitchek, Nicolas, 't Hart, Bert A., Zurawski, Sandra, Klucar, Peter, Hantraye, Philippe, Deiva, Kumaran, Zurawski, Gerard, Oh, SangKon, Le Grand, Roger, Serguera, Ché
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796575/
https://www.ncbi.nlm.nih.gov/pubmed/31492559
http://dx.doi.org/10.1016/j.ebiom.2019.08.052
Descripción
Sumario:BACKGROUND: Autoimmune demyelinating diseases (ADD) are a major cause of neurological disability due to autoreactive cellular and humoral immune responses against brain antigens. A cure for chronic ADD could be obtained by appropriate immunomodulation. METHODS: We implemented a preclinical scheme to foster immune tolerance to myelin oligodendrocyte glycoprotein (MOG), in a cynomolgus-macaque model of experimental autoimmune encephalomyelitis (EAE), in which administration of recombinant human MOG (rhMOG) elicits brain inflammation mediated by MOG-autoreactive CD4(+) lymphocytes and anti-MOG IgG. For immunotherapy, we used a recombinant antibody (Ab) directed against the dendritic cell-asialoglycoprotein receptor (DC-ASGPR) fused either to MOG or a control antigen PSA (prostate-specific antigen). FINDINGS: rhMOG and the anti-DC-ASGPR-MOG were respectively detected in CD1a(+) DCs or CD163(+) cells in the skin of macaques. Intradermal administration of anti-DC-ASGPR-MOG, but not control anti-DC-ASGPR-PSA, was protective against EAE. The treatment prevented the CD4(+) T cell activation and proinflammatory cytokine production observed in controls. Moreover, the administration of anti-DC-ASGPR-MOG induced MOG-specific CD4(+)CD25(+)FOXP3(+)CD39(+) regulatory lymphocytes and favoured an upsurge in systemic TGFβ and IL-8 upon rhMOG re-administration in vivo. INTERPRETATION: We show that the delivery of an anti-DC-ASGPR-MOG allows antigen-specific adaptive immune modulation to prevent the breach of immune tolerance to MOG. Our findings pave the way for therapeutic vaccines for long-lasting remission to grave encephalomyelitis with identified autoantigens, such as ADD associated with anti-MOG autoantibodies. FUND: Work supported by the French ANR (ANR-11-INBS-0008 and ANR-10-EQPX-02-01), NIH (NIH 1 R01 AI 105066), the Baylor Scott and White Healthcare System funding and Roche Research Collaborative grants.