Cargando…
Analysis of Single Nucleotide Variants in CRISPR-Cas9 Edited Zebrafish Exomes Shows No Evidence of Off-Target Inflation
Therapeutic applications of CRISPR-Cas9 gene editing have spurred innovation in Cas9 enzyme engineering and single guide RNA (sgRNA) design algorithms to minimize potential off-target events. While recent work in rodents outlines favorable conditions for specific editing and uses a trio design (moth...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797590/ https://www.ncbi.nlm.nih.gov/pubmed/31681410 http://dx.doi.org/10.3389/fgene.2019.00949 |
_version_ | 1783459861702377472 |
---|---|
author | Mooney, Marie R. Davis, Erica E. Katsanis, Nicholas |
author_facet | Mooney, Marie R. Davis, Erica E. Katsanis, Nicholas |
author_sort | Mooney, Marie R. |
collection | PubMed |
description | Therapeutic applications of CRISPR-Cas9 gene editing have spurred innovation in Cas9 enzyme engineering and single guide RNA (sgRNA) design algorithms to minimize potential off-target events. While recent work in rodents outlines favorable conditions for specific editing and uses a trio design (mother, father, offspring) to control for the contribution of natural genome variation, the potential for CRISPR-Cas9 to induce de novo mutations in vivo remains a topic of interest. In zebrafish, we performed whole exome sequencing (WES) on two generations of offspring derived from the same founding pair: 54 exomes from control and CRISPR-Cas9 edited embryos in the first generation (F0), and 16 exomes from the progeny of inbred F0 pairs in the second generation (F1). We did not observe an increase in the number of transmissible variants in edited individuals in F1, nor in F0 edited mosaic individuals, arguing that in vivo editing does not precipitate an inflation of deleterious point mutations. |
format | Online Article Text |
id | pubmed-6797590 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67975902019-11-01 Analysis of Single Nucleotide Variants in CRISPR-Cas9 Edited Zebrafish Exomes Shows No Evidence of Off-Target Inflation Mooney, Marie R. Davis, Erica E. Katsanis, Nicholas Front Genet Genetics Therapeutic applications of CRISPR-Cas9 gene editing have spurred innovation in Cas9 enzyme engineering and single guide RNA (sgRNA) design algorithms to minimize potential off-target events. While recent work in rodents outlines favorable conditions for specific editing and uses a trio design (mother, father, offspring) to control for the contribution of natural genome variation, the potential for CRISPR-Cas9 to induce de novo mutations in vivo remains a topic of interest. In zebrafish, we performed whole exome sequencing (WES) on two generations of offspring derived from the same founding pair: 54 exomes from control and CRISPR-Cas9 edited embryos in the first generation (F0), and 16 exomes from the progeny of inbred F0 pairs in the second generation (F1). We did not observe an increase in the number of transmissible variants in edited individuals in F1, nor in F0 edited mosaic individuals, arguing that in vivo editing does not precipitate an inflation of deleterious point mutations. Frontiers Media S.A. 2019-10-11 /pmc/articles/PMC6797590/ /pubmed/31681410 http://dx.doi.org/10.3389/fgene.2019.00949 Text en Copyright © 2019 Mooney, Davis and Katsanis http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Mooney, Marie R. Davis, Erica E. Katsanis, Nicholas Analysis of Single Nucleotide Variants in CRISPR-Cas9 Edited Zebrafish Exomes Shows No Evidence of Off-Target Inflation |
title | Analysis of Single Nucleotide Variants in CRISPR-Cas9 Edited Zebrafish Exomes Shows No Evidence of Off-Target Inflation |
title_full | Analysis of Single Nucleotide Variants in CRISPR-Cas9 Edited Zebrafish Exomes Shows No Evidence of Off-Target Inflation |
title_fullStr | Analysis of Single Nucleotide Variants in CRISPR-Cas9 Edited Zebrafish Exomes Shows No Evidence of Off-Target Inflation |
title_full_unstemmed | Analysis of Single Nucleotide Variants in CRISPR-Cas9 Edited Zebrafish Exomes Shows No Evidence of Off-Target Inflation |
title_short | Analysis of Single Nucleotide Variants in CRISPR-Cas9 Edited Zebrafish Exomes Shows No Evidence of Off-Target Inflation |
title_sort | analysis of single nucleotide variants in crispr-cas9 edited zebrafish exomes shows no evidence of off-target inflation |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797590/ https://www.ncbi.nlm.nih.gov/pubmed/31681410 http://dx.doi.org/10.3389/fgene.2019.00949 |
work_keys_str_mv | AT mooneymarier analysisofsinglenucleotidevariantsincrisprcas9editedzebrafishexomesshowsnoevidenceofofftargetinflation AT davisericae analysisofsinglenucleotidevariantsincrisprcas9editedzebrafishexomesshowsnoevidenceofofftargetinflation AT katsanisnicholas analysisofsinglenucleotidevariantsincrisprcas9editedzebrafishexomesshowsnoevidenceofofftargetinflation |