Cargando…

Diet‐induced DNA methylation within the hypothalamic arcuate nucleus and dysregulated leptin and insulin signaling in the pathophysiology of obesity

Obesity rates continue to rise in an unprecedented manner in what could be the most rapid population‐scale shift in human phenotype ever to occur. Increased consumption of unhealthy, calorie‐dense foods, coupled with sedentary lifestyles, is the main factor contributing to a positive energy balance...

Descripción completa

Detalles Bibliográficos
Autores principales: Samodien, Ebrahim, Pheiffer, Carmen, Erasmus, Melisse, Mabasa, Lawrence, Louw, Johan, Johnson, Rabia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804761/
https://www.ncbi.nlm.nih.gov/pubmed/31660128
http://dx.doi.org/10.1002/fsn3.1169
Descripción
Sumario:Obesity rates continue to rise in an unprecedented manner in what could be the most rapid population‐scale shift in human phenotype ever to occur. Increased consumption of unhealthy, calorie‐dense foods, coupled with sedentary lifestyles, is the main factor contributing to a positive energy balance and the development of obesity. Leptin and insulin are key hormones implicated in pathogenesis of this disorder and are crucial for controlling whole‐body energy homeostasis. Their respective function is mediated by the counterbalance of anorexigenic and orexigenic neurons located within the hypothalamic arcuate nucleus. Dysregulation of leptin and insulin signaling pathways within this brain region may contribute not only to the development of obesity, but also systemically affect the peripheral organs, thereby manifesting as metabolic diseases. Although the exact mechanisms detailing how these hypothalamic nuclei contribute to disease pathology are still unclear, increasing evidence suggests that altered DNA methylation may be involved. This review evaluates animal studies that have demonstrated diet‐induced DNA methylation changes in genes that regulate energy homeostasis within the arcuate nucleus, and elucidates possible mechanisms causing hypothalamic leptin and insulin resistance leading to the development of obesity and metabolic diseases.