Cargando…
Size matters: how sample size affects the reproducibility and specificity of gene set analysis
BACKGROUND: Gene set analysis is a well-established approach for interpretation of data from high-throughput gene expression studies. Achieving reproducible results is an essential requirement in such studies. One factor of a gene expression experiment that can affect reproducibility is the choice o...
Autores principales: | Maleki, Farhad, Ovens, Katie, McQuillan, Ian, Kusalik, Anthony J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805317/ https://www.ncbi.nlm.nih.gov/pubmed/31639047 http://dx.doi.org/10.1186/s40246-019-0226-2 |
Ejemplares similares
-
Silver: Forging almost Gold Standard Datasets
por: Maleki, Farhad, et al.
Publicado: (2021) -
Juxtapose: a gene-embedding approach for comparing co-expression networks
por: Ovens, Katie, et al.
Publicado: (2021) -
Gene Set Analysis: Challenges, Opportunities, and Future Research
por: Maleki, Farhad, et al.
Publicado: (2020) -
Comparative Analyses of Gene Co-expression Networks: Implementations and Applications in the Study of Evolution
por: Ovens, Katie, et al.
Publicado: (2021) -
Editorial: Advancement in Gene Set Analysis: Gaining Insight From High-Throughput Data
por: Maleki, Farhad, et al.
Publicado: (2022)