Cargando…

QSAR analysis and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents

The norepinephrine transporter (NET) is a Na(+)/Cl(−) coupled neurotransmitter transporter responsible for reuptake of released norepinephrine (NE) into nerve terminals in the brain, a key therapeutic used in the treatment of psychiatric disorders. A quantitative structural activity relationship (QS...

Descripción completa

Detalles Bibliográficos
Autores principales: Olasupo, Sabitu Babatunde, Uzairu, Adamu, Shallangwa, Gideon, Uba, Sani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806411/
https://www.ncbi.nlm.nih.gov/pubmed/31692668
http://dx.doi.org/10.1016/j.heliyon.2019.e02640
_version_ 1783461622843441152
author Olasupo, Sabitu Babatunde
Uzairu, Adamu
Shallangwa, Gideon
Uba, Sani
author_facet Olasupo, Sabitu Babatunde
Uzairu, Adamu
Shallangwa, Gideon
Uba, Sani
author_sort Olasupo, Sabitu Babatunde
collection PubMed
description The norepinephrine transporter (NET) is a Na(+)/Cl(−) coupled neurotransmitter transporter responsible for reuptake of released norepinephrine (NE) into nerve terminals in the brain, a key therapeutic used in the treatment of psychiatric disorders. A quantitative structural activity relationship (QSAR) study was performed on 50 compounds of NET inhibitors to investigate their inhibitory potencies against norepinephrine transporter as novel drugs for anti-psychotic disorders. The compounds were optimized by employing Density functional theory (DFT) with basis set of B(3)LYP/6-31G*. The genetic function Algorithm (GFA) approach was used to generate a highly predictive and statistically significant model with good correlation coefficient R(2)(Train) = 0.952 Cross validated coefficient Q(2)(cv) = 0.870 and adjusted squared correlation coefficient R(2)(adj) = 0.898. The predictability and accuracy of the developed model was evaluated through external validation using test set compound, Y-randomization and applicability domain techniques. The results of Molecular docking analysis by using two neurotransmitter transporters PDB ID 2A65 (resolution = 1.65 Å) and PDB ID 4M48 (resolution = 2.955 Å) showed that two of the ligands (compound 12 and 44) having higher binding affinity were observed to inhibit the targets by forming hydrogen bonds and hydrophobic interactions with amino acids of the two receptors respectively. The results of these studies would provide important new insight into the molecular basis and structural requirements to design more potent and more specific therapeutic anti-psychotic drugs/agents.
format Online
Article
Text
id pubmed-6806411
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68064112019-11-05 QSAR analysis and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents Olasupo, Sabitu Babatunde Uzairu, Adamu Shallangwa, Gideon Uba, Sani Heliyon Article The norepinephrine transporter (NET) is a Na(+)/Cl(−) coupled neurotransmitter transporter responsible for reuptake of released norepinephrine (NE) into nerve terminals in the brain, a key therapeutic used in the treatment of psychiatric disorders. A quantitative structural activity relationship (QSAR) study was performed on 50 compounds of NET inhibitors to investigate their inhibitory potencies against norepinephrine transporter as novel drugs for anti-psychotic disorders. The compounds were optimized by employing Density functional theory (DFT) with basis set of B(3)LYP/6-31G*. The genetic function Algorithm (GFA) approach was used to generate a highly predictive and statistically significant model with good correlation coefficient R(2)(Train) = 0.952 Cross validated coefficient Q(2)(cv) = 0.870 and adjusted squared correlation coefficient R(2)(adj) = 0.898. The predictability and accuracy of the developed model was evaluated through external validation using test set compound, Y-randomization and applicability domain techniques. The results of Molecular docking analysis by using two neurotransmitter transporters PDB ID 2A65 (resolution = 1.65 Å) and PDB ID 4M48 (resolution = 2.955 Å) showed that two of the ligands (compound 12 and 44) having higher binding affinity were observed to inhibit the targets by forming hydrogen bonds and hydrophobic interactions with amino acids of the two receptors respectively. The results of these studies would provide important new insight into the molecular basis and structural requirements to design more potent and more specific therapeutic anti-psychotic drugs/agents. Elsevier 2019-10-19 /pmc/articles/PMC6806411/ /pubmed/31692668 http://dx.doi.org/10.1016/j.heliyon.2019.e02640 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Olasupo, Sabitu Babatunde
Uzairu, Adamu
Shallangwa, Gideon
Uba, Sani
QSAR analysis and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents
title QSAR analysis and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents
title_full QSAR analysis and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents
title_fullStr QSAR analysis and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents
title_full_unstemmed QSAR analysis and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents
title_short QSAR analysis and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents
title_sort qsar analysis and molecular docking simulation of norepinephrine transporter (net) inhibitors as anti-psychotic therapeutic agents
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806411/
https://www.ncbi.nlm.nih.gov/pubmed/31692668
http://dx.doi.org/10.1016/j.heliyon.2019.e02640
work_keys_str_mv AT olasuposabitubabatunde qsaranalysisandmoleculardockingsimulationofnorepinephrinetransporternetinhibitorsasantipsychotictherapeuticagents
AT uzairuadamu qsaranalysisandmoleculardockingsimulationofnorepinephrinetransporternetinhibitorsasantipsychotictherapeuticagents
AT shallangwagideon qsaranalysisandmoleculardockingsimulationofnorepinephrinetransporternetinhibitorsasantipsychotictherapeuticagents
AT ubasani qsaranalysisandmoleculardockingsimulationofnorepinephrinetransporternetinhibitorsasantipsychotictherapeuticagents