Cargando…
Concerted dynamics of metallo-base pairs in an A/B-form helical transition
Metal-mediated base pairs expand the repertoire of nucleic acid structures and dynamics. Here we report solution structures and dynamics of duplex DNA containing two all-natural C-Hg(II)-T metallo base pairs separated by six canonical base pairs. NMR experiments reveal a 3:1 ratio of well-resolved s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811676/ https://www.ncbi.nlm.nih.gov/pubmed/31645548 http://dx.doi.org/10.1038/s41467-019-12440-x |
Sumario: | Metal-mediated base pairs expand the repertoire of nucleic acid structures and dynamics. Here we report solution structures and dynamics of duplex DNA containing two all-natural C-Hg(II)-T metallo base pairs separated by six canonical base pairs. NMR experiments reveal a 3:1 ratio of well-resolved structures in dynamic equilibrium. The major species contains two (N3)T-Hg(II)-(N3)C base pairs in a predominantly B-form helix. The minor species contains (N3)T-Hg(II)-(N4)C base pairs and greater A-form characteristics. Ten-fold different (1)J coupling constants ((15)N,(199)Hg) are observed for (N3)C-Hg(II) (114 Hz) versus (N4)C-Hg(II) (1052 Hz) connectivities, reflecting differences in cytosine ionization and metal-bonding strengths. Dynamic interconversion between the two types of C-Hg(II)-T base pairs are coupled to a global conformational exchange between the helices. These observations inspired the design of a repetitive DNA sequence capable of undergoing a global B-to-A-form helical transition upon adding Hg(II), demonstrating that C-Hg(II)-T has unique switching potential in DNA-based materials and devices. |
---|