Cargando…

Altered inflammasome machinery as a key player in the perpetuation of Rett syndrome oxinflammation

Rett syndrome (RTT) is a progressive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with an oxinflammatory status. Inflammasomes are multi-protein complexes, responsible for host immune responses against pathog...

Descripción completa

Detalles Bibliográficos
Autores principales: Pecorelli, Alessandra, Cordone, Valeria, Messano, Nicolò, Zhang, Changqing, Falone, Stefano, Amicarelli, Fernanda, Hayek, Joussef, Valacchi, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812177/
https://www.ncbi.nlm.nih.gov/pubmed/31606551
http://dx.doi.org/10.1016/j.redox.2019.101334
Descripción
Sumario:Rett syndrome (RTT) is a progressive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with an oxinflammatory status. Inflammasomes are multi-protein complexes, responsible for host immune responses against pathogen infections and redox-related cellular stress. Assembly of NLRP3/ASC inflammasome triggers pro-caspase-1 activation, thus, resulting in IL-1β and IL-18 maturation. However, an aberrant activation of inflammasome system has been implicated in several human diseases. Our aim was to investigate the possible role of inflammasome in the chronic subclinical inflammatory condition typical of RTT, by analyzing this complex in basal and lipopolysaccharide (LPS)+ATP-stimulated primary fibroblasts, as well as in serum from RTT patients and healthy volunteers. RTT cells showed increased levels of nuclear p65 and ASC proteins, pro-IL-1β mRNA, and NLRP3/ASC interaction in basal condition, without any further response upon the LPS + ATP stimuli. Moreover, augmented levels of circulating ASC and IL-18 proteins were found in serum of RTT patients, which are likely able to amplify the inflammatory response. Taken together, our findings suggest that RTT patients exhibited a challenged inflammasome machinery at cellular and systemic level, which may contribute to the subclinical inflammatory state feedback observed in this pathology.