Cargando…
A Phase Variable Approach for Improved Rhythmic and Non-Rhythmic Control of a Powered Knee-Ankle Prosthesis
Although there has been recent progress in control of multi-joint prosthetic legs for rhythmic tasks such as walking, control of these systems for non-rhythmic motions and general real-world maneuvers is still an open problem. In this article, we develop a new controller that is capable of both rhyt...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813797/ https://www.ncbi.nlm.nih.gov/pubmed/31656719 http://dx.doi.org/10.1109/ACCESS.2019.2933614 |
_version_ | 1783462913201143808 |
---|---|
author | REZAZADEH, SIAVASH QUINTERO, DAVID DIVEKAR, NIKHIL REZNICK, EMMA GRAY, LESLIE GREGG, ROBERT D. |
author_facet | REZAZADEH, SIAVASH QUINTERO, DAVID DIVEKAR, NIKHIL REZNICK, EMMA GRAY, LESLIE GREGG, ROBERT D. |
author_sort | REZAZADEH, SIAVASH |
collection | PubMed |
description | Although there has been recent progress in control of multi-joint prosthetic legs for rhythmic tasks such as walking, control of these systems for non-rhythmic motions and general real-world maneuvers is still an open problem. In this article, we develop a new controller that is capable of both rhythmic (constant-speed) walking, transitions between speeds and/or tasks, and some common volitional leg motions. We introduce a new piecewise holonomic phase variable, which, through a finite state machine, forms the basis of our controller. The phase variable is constructed by measuring the thigh angle, and the transitions in the finite state machine are formulated through sensing foot contact along with attributes of a nominal reference gait trajectory. The controller was implemented on a powered knee-ankle prosthesis and tested with a transfemoral amputee subject, who successfully performed a wide range of rhythmic and non-rhythmic tasks, including slow and fast walking, quick start and stop, backward walking, walking over obstacles, and kicking a soccer ball. Use of the powered leg resulted in clinically significant reductions in amputee compensations for rhythmic tasks (including vaulting and hip circumduction) when compared to use of the take-home passive leg. In addition, considerable improvements were also observed in the performance for non-rhythmic tasks. The proposed approach is expected to provide a better understanding of rhythmic and non-rhythmic motions in a unified framework, which in turn can lead to more reliable control of multi-joint prostheses for a wider range of real-world tasks. |
format | Online Article Text |
id | pubmed-6813797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-68137972019-10-25 A Phase Variable Approach for Improved Rhythmic and Non-Rhythmic Control of a Powered Knee-Ankle Prosthesis REZAZADEH, SIAVASH QUINTERO, DAVID DIVEKAR, NIKHIL REZNICK, EMMA GRAY, LESLIE GREGG, ROBERT D. IEEE Access Article Although there has been recent progress in control of multi-joint prosthetic legs for rhythmic tasks such as walking, control of these systems for non-rhythmic motions and general real-world maneuvers is still an open problem. In this article, we develop a new controller that is capable of both rhythmic (constant-speed) walking, transitions between speeds and/or tasks, and some common volitional leg motions. We introduce a new piecewise holonomic phase variable, which, through a finite state machine, forms the basis of our controller. The phase variable is constructed by measuring the thigh angle, and the transitions in the finite state machine are formulated through sensing foot contact along with attributes of a nominal reference gait trajectory. The controller was implemented on a powered knee-ankle prosthesis and tested with a transfemoral amputee subject, who successfully performed a wide range of rhythmic and non-rhythmic tasks, including slow and fast walking, quick start and stop, backward walking, walking over obstacles, and kicking a soccer ball. Use of the powered leg resulted in clinically significant reductions in amputee compensations for rhythmic tasks (including vaulting and hip circumduction) when compared to use of the take-home passive leg. In addition, considerable improvements were also observed in the performance for non-rhythmic tasks. The proposed approach is expected to provide a better understanding of rhythmic and non-rhythmic motions in a unified framework, which in turn can lead to more reliable control of multi-joint prostheses for a wider range of real-world tasks. 2019-08-06 2019 /pmc/articles/PMC6813797/ /pubmed/31656719 http://dx.doi.org/10.1109/ACCESS.2019.2933614 Text en This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article REZAZADEH, SIAVASH QUINTERO, DAVID DIVEKAR, NIKHIL REZNICK, EMMA GRAY, LESLIE GREGG, ROBERT D. A Phase Variable Approach for Improved Rhythmic and Non-Rhythmic Control of a Powered Knee-Ankle Prosthesis |
title | A Phase Variable Approach for Improved Rhythmic and Non-Rhythmic Control of a Powered Knee-Ankle Prosthesis |
title_full | A Phase Variable Approach for Improved Rhythmic and Non-Rhythmic Control of a Powered Knee-Ankle Prosthesis |
title_fullStr | A Phase Variable Approach for Improved Rhythmic and Non-Rhythmic Control of a Powered Knee-Ankle Prosthesis |
title_full_unstemmed | A Phase Variable Approach for Improved Rhythmic and Non-Rhythmic Control of a Powered Knee-Ankle Prosthesis |
title_short | A Phase Variable Approach for Improved Rhythmic and Non-Rhythmic Control of a Powered Knee-Ankle Prosthesis |
title_sort | phase variable approach for improved rhythmic and non-rhythmic control of a powered knee-ankle prosthesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813797/ https://www.ncbi.nlm.nih.gov/pubmed/31656719 http://dx.doi.org/10.1109/ACCESS.2019.2933614 |
work_keys_str_mv | AT rezazadehsiavash aphasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT quinterodavid aphasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT divekarnikhil aphasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT reznickemma aphasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT grayleslie aphasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT greggrobertd aphasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT rezazadehsiavash phasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT quinterodavid phasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT divekarnikhil phasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT reznickemma phasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT grayleslie phasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis AT greggrobertd phasevariableapproachforimprovedrhythmicandnonrhythmiccontrolofapoweredkneeankleprosthesis |