Cargando…

Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine

Traditional approaches to cancer therapy seek common molecular targets in tumors from different patients. However, molecular profiles differ between patients, and most tumors exhibit inherent heterogeneity. Hence, imprecise targeting commonly results in side effects, reduced efficacy, and drug resis...

Descripción completa

Detalles Bibliográficos
Autores principales: Conforte, Alessandra J., Tuszynski, Jack Adam, da Silva, Fabricio Alves Barbosa, Carels, Nicolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816034/
https://www.ncbi.nlm.nih.gov/pubmed/31695721
http://dx.doi.org/10.3389/fgene.2019.00930
_version_ 1783463307700600832
author Conforte, Alessandra J.
Tuszynski, Jack Adam
da Silva, Fabricio Alves Barbosa
Carels, Nicolas
author_facet Conforte, Alessandra J.
Tuszynski, Jack Adam
da Silva, Fabricio Alves Barbosa
Carels, Nicolas
author_sort Conforte, Alessandra J.
collection PubMed
description Traditional approaches to cancer therapy seek common molecular targets in tumors from different patients. However, molecular profiles differ between patients, and most tumors exhibit inherent heterogeneity. Hence, imprecise targeting commonly results in side effects, reduced efficacy, and drug resistance. By contrast, personalized medicine aims to establish a molecular diagnosis specific to each patient, which is currently feasible due to the progress achieved with high-throughput technologies. In this report, we explored data from human RNA-seq and protein–protein interaction (PPI) networks using bioinformatics to investigate the relationship between tumor entropy and aggressiveness. To compare PPI subnetworks of different sizes, we calculated the Shannon entropy associated with vertex connections of differentially expressed genes comparing tumor samples with their paired control tissues. We found that the inhibition of up-regulated connectivity hubs led to a higher reduction of subnetwork entropy compared to that obtained with the inhibition of targets selected at random. Furthermore, these hubs were described to be participating in tumor processes. We also found a significant negative correlation between subnetwork entropies of tumors and the respective 5-year survival rates of the corresponding cancer types. This correlation was also observed considering patients with lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) based on the clinical data from The Cancer Genome Atlas database (TCGA). Thus, network entropy increases in parallel with tumor aggressiveness but does not correlate with PPI subnetwork size. This correlation is consistent with previous reports and allowed us to assess the number of hubs to be inhibited for therapy to be effective, in the context of precision medicine, by reference to the 100% patient survival rate 5 years after diagnosis. Large standard deviations of subnetwork entropies and variations in target numbers per patient among tumor types characterize tumor heterogeneity.
format Online
Article
Text
id pubmed-6816034
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-68160342019-11-06 Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine Conforte, Alessandra J. Tuszynski, Jack Adam da Silva, Fabricio Alves Barbosa Carels, Nicolas Front Genet Genetics Traditional approaches to cancer therapy seek common molecular targets in tumors from different patients. However, molecular profiles differ between patients, and most tumors exhibit inherent heterogeneity. Hence, imprecise targeting commonly results in side effects, reduced efficacy, and drug resistance. By contrast, personalized medicine aims to establish a molecular diagnosis specific to each patient, which is currently feasible due to the progress achieved with high-throughput technologies. In this report, we explored data from human RNA-seq and protein–protein interaction (PPI) networks using bioinformatics to investigate the relationship between tumor entropy and aggressiveness. To compare PPI subnetworks of different sizes, we calculated the Shannon entropy associated with vertex connections of differentially expressed genes comparing tumor samples with their paired control tissues. We found that the inhibition of up-regulated connectivity hubs led to a higher reduction of subnetwork entropy compared to that obtained with the inhibition of targets selected at random. Furthermore, these hubs were described to be participating in tumor processes. We also found a significant negative correlation between subnetwork entropies of tumors and the respective 5-year survival rates of the corresponding cancer types. This correlation was also observed considering patients with lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) based on the clinical data from The Cancer Genome Atlas database (TCGA). Thus, network entropy increases in parallel with tumor aggressiveness but does not correlate with PPI subnetwork size. This correlation is consistent with previous reports and allowed us to assess the number of hubs to be inhibited for therapy to be effective, in the context of precision medicine, by reference to the 100% patient survival rate 5 years after diagnosis. Large standard deviations of subnetwork entropies and variations in target numbers per patient among tumor types characterize tumor heterogeneity. Frontiers Media S.A. 2019-10-21 /pmc/articles/PMC6816034/ /pubmed/31695721 http://dx.doi.org/10.3389/fgene.2019.00930 Text en Copyright © 2019 Conforte, Tuszynski, Silva and Carels http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Conforte, Alessandra J.
Tuszynski, Jack Adam
da Silva, Fabricio Alves Barbosa
Carels, Nicolas
Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine
title Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine
title_full Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine
title_fullStr Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine
title_full_unstemmed Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine
title_short Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine
title_sort signaling complexity measured by shannon entropy and its application in personalized medicine
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816034/
https://www.ncbi.nlm.nih.gov/pubmed/31695721
http://dx.doi.org/10.3389/fgene.2019.00930
work_keys_str_mv AT confortealessandraj signalingcomplexitymeasuredbyshannonentropyanditsapplicationinpersonalizedmedicine
AT tuszynskijackadam signalingcomplexitymeasuredbyshannonentropyanditsapplicationinpersonalizedmedicine
AT dasilvafabricioalvesbarbosa signalingcomplexitymeasuredbyshannonentropyanditsapplicationinpersonalizedmedicine
AT carelsnicolas signalingcomplexitymeasuredbyshannonentropyanditsapplicationinpersonalizedmedicine