Cargando…

WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage

During DNA replication stress, stalled replication forks need to be stabilized to prevent fork collapse and genome instability. The AAA + ATPase WRNIP1 (Werner Helicase Interacting Protein 1) has been implicated in the protection of stalled replication forks from nucleolytic degradation, but the und...

Descripción completa

Detalles Bibliográficos
Autores principales: Porebski, Bartlomiej, Wild, Sebastian, Kummer, Sandra, Scaglione, Sarah, Gaillard, Pierre-Henri L., Gari, Kerstin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820244/
https://www.ncbi.nlm.nih.gov/pubmed/31654852
http://dx.doi.org/10.1016/j.isci.2019.10.010
_version_ 1783463896095391744
author Porebski, Bartlomiej
Wild, Sebastian
Kummer, Sandra
Scaglione, Sarah
Gaillard, Pierre-Henri L.
Gari, Kerstin
author_facet Porebski, Bartlomiej
Wild, Sebastian
Kummer, Sandra
Scaglione, Sarah
Gaillard, Pierre-Henri L.
Gari, Kerstin
author_sort Porebski, Bartlomiej
collection PubMed
description During DNA replication stress, stalled replication forks need to be stabilized to prevent fork collapse and genome instability. The AAA + ATPase WRNIP1 (Werner Helicase Interacting Protein 1) has been implicated in the protection of stalled replication forks from nucleolytic degradation, but the underlying molecular mechanism has remained unclear. Here we show that WRNIP1 exerts its protective function downstream of fork reversal. Unexpectedly though, WRNIP1 is not part of the well-studied BRCA2-dependent branch of fork protection but seems to protect the junction point of reversed replication forks from SLX4-mediated endonucleolytic degradation, possibly by directly binding to reversed replication forks. This function is specific to the shorter, less abundant, and less conserved variant of WRNIP1. Overall, our data suggest that in the absence of BRCA2 and WRNIP1 different DNA substrates are generated at reversed forks but that nascent strand degradation in both cases depends on the activity of exonucleases and structure-specific endonucleases.
format Online
Article
Text
id pubmed-6820244
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68202442019-11-04 WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage Porebski, Bartlomiej Wild, Sebastian Kummer, Sandra Scaglione, Sarah Gaillard, Pierre-Henri L. Gari, Kerstin iScience Article During DNA replication stress, stalled replication forks need to be stabilized to prevent fork collapse and genome instability. The AAA + ATPase WRNIP1 (Werner Helicase Interacting Protein 1) has been implicated in the protection of stalled replication forks from nucleolytic degradation, but the underlying molecular mechanism has remained unclear. Here we show that WRNIP1 exerts its protective function downstream of fork reversal. Unexpectedly though, WRNIP1 is not part of the well-studied BRCA2-dependent branch of fork protection but seems to protect the junction point of reversed replication forks from SLX4-mediated endonucleolytic degradation, possibly by directly binding to reversed replication forks. This function is specific to the shorter, less abundant, and less conserved variant of WRNIP1. Overall, our data suggest that in the absence of BRCA2 and WRNIP1 different DNA substrates are generated at reversed forks but that nascent strand degradation in both cases depends on the activity of exonucleases and structure-specific endonucleases. Elsevier 2019-10-08 /pmc/articles/PMC6820244/ /pubmed/31654852 http://dx.doi.org/10.1016/j.isci.2019.10.010 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Porebski, Bartlomiej
Wild, Sebastian
Kummer, Sandra
Scaglione, Sarah
Gaillard, Pierre-Henri L.
Gari, Kerstin
WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage
title WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage
title_full WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage
title_fullStr WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage
title_full_unstemmed WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage
title_short WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage
title_sort wrnip1 protects reversed dna replication forks from slx4-dependent nucleolytic cleavage
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820244/
https://www.ncbi.nlm.nih.gov/pubmed/31654852
http://dx.doi.org/10.1016/j.isci.2019.10.010
work_keys_str_mv AT porebskibartlomiej wrnip1protectsreverseddnareplicationforksfromslx4dependentnucleolyticcleavage
AT wildsebastian wrnip1protectsreverseddnareplicationforksfromslx4dependentnucleolyticcleavage
AT kummersandra wrnip1protectsreverseddnareplicationforksfromslx4dependentnucleolyticcleavage
AT scaglionesarah wrnip1protectsreverseddnareplicationforksfromslx4dependentnucleolyticcleavage
AT gaillardpierrehenril wrnip1protectsreverseddnareplicationforksfromslx4dependentnucleolyticcleavage
AT garikerstin wrnip1protectsreverseddnareplicationforksfromslx4dependentnucleolyticcleavage