Cargando…
A Bayesian model integration for mutation calling through data partitioning
MOTIVATION: Detection of somatic mutations from tumor and matched normal sequencing data has become among the most important analysis methods in cancer research. Some existing mutation callers have focused on additional information, e.g. heterozygous single-nucleotide polymorphisms (SNPs) nearby mut...
Autores principales: | Moriyama, Takuya, Imoto, Seiya, Hayashi, Shuto, Shiraishi, Yuichi, Miyano, Satoru, Yamaguchi, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821361/ https://www.ncbi.nlm.nih.gov/pubmed/30924874 http://dx.doi.org/10.1093/bioinformatics/btz233 |
Ejemplares similares
-
ALPHLARD-NT: Bayesian Method for Human Leukocyte Antigen Genotyping and Mutation Calling through Simultaneous Analysis of Normal and Tumor Whole-Genome Sequence Data
por: Hayashi, Shuto, et al.
Publicado: (2019) -
ALPHLARD: a Bayesian method for analyzing HLA genes from whole genome sequence data
por: Hayashi, Shuto, et al.
Publicado: (2018) -
HapMuC: somatic mutation calling using heterozygous germ line variants near candidate mutations
por: Usuyama, Naoto, et al.
Publicado: (2014) -
Neoantimon: a multifunctional R package for identification of tumor-specific neoantigens
por: Hasegawa, Takanori, et al.
Publicado: (2020) -
Sequence-specific bias correction for RNA-seq data using recurrent neural networks
por: Zhang, Yao-zhong, et al.
Publicado: (2017)