Cargando…
AFF1 acetylation by p300 temporally inhibits transcription during genotoxic stress response
Soon after exposure to genotoxic reagents, mammalian cells inhibit transcription to prevent collisions with repair machinery and to mount a proper DNA damage response. However, mechanisms underlying early transcriptional inhibition are poorly understood. In this report, we show that site-specific ac...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823056/ https://www.ncbi.nlm.nih.gov/pubmed/31611376 http://dx.doi.org/10.1073/pnas.1907097116 |
Sumario: | Soon after exposure to genotoxic reagents, mammalian cells inhibit transcription to prevent collisions with repair machinery and to mount a proper DNA damage response. However, mechanisms underlying early transcriptional inhibition are poorly understood. In this report, we show that site-specific acetylation of super elongation complex (SEC) subunit AFF1 by p300 reduces its interaction with other SEC components and impairs P-TEFb−mediated C-terminal domain phosphorylation of RNA polymerase II both in vitro and in vivo. Reexpression of wild-type AFF1, but not an acetylation mimic mutant, restores SEC component recruitment and target gene expression in AFF1 knockdown cells. Physiologically, we show that, upon genotoxic exposure, p300-mediated AFF1 acetylation is dynamic and strongly correlated with concomitant global down-regulation of transcription—and that this can be reversed by overexpression of an acetylation-defective AFF1 mutant. Therefore, we describe a mechanism of dynamic transcriptional regulation involving p300-mediated acetylation of a key elongation factor during genotoxic stress. |
---|