Cargando…

Split selectable markers

Selectable markers are widely used in transgenesis and genome editing for selecting engineered cells with a desired genotype but the variety of markers is limited. Here we present split selectable markers that each allow for selection of multiple “unlinked” transgenes in the context of lentivirus-me...

Descripción completa

Detalles Bibliográficos
Autores principales: Jillette, Nathaniel, Du, Menghan, Zhu, Jacqueline Jufen, Cardoz, Peter, Cheng, Albert Wu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823381/
https://www.ncbi.nlm.nih.gov/pubmed/31672965
http://dx.doi.org/10.1038/s41467-019-12891-2
Descripción
Sumario:Selectable markers are widely used in transgenesis and genome editing for selecting engineered cells with a desired genotype but the variety of markers is limited. Here we present split selectable markers that each allow for selection of multiple “unlinked” transgenes in the context of lentivirus-mediated transgenesis as well as CRISPR-Cas-mediated knock-ins. Split marker gene segments fused to protein splicing elements called “inteins” can be separately co-segregated with different transgenic vectors, and rejoin via protein trans-splicing to reconstitute a full-length marker protein in host cells receiving all intended vectors. Using a lentiviral system, we create and validate 2-split Hygromycin, Puromycin, Neomycin and Blasticidin resistance genes as well as mScarlet fluorescent proteins. By combining split points, we create 3- and 6-split Hygromycin resistance genes, demonstrating that higher-degree split markers can be generated by a “chaining” design. We adapt the split marker system for selecting biallelically engineered cells after CRISPR gene editing. Future engineering of split markers may allow selection of a higher number of genetic modifications in target cells.