Cargando…
Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies
Multiple imputation (MI) is a well-established method for dealing with missing data. MI is computationally intensive when imputing missing covariates with high-dimensional outcome data (e.g., DNA methylation data in epigenome-wide association studies (EWAS)), because every outcome variable must be i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825836/ https://www.ncbi.nlm.nih.gov/pubmed/31504104 http://dx.doi.org/10.1093/aje/kwz186 |
_version_ | 1783464964205314048 |
---|---|
author | Mills, Harriet L Heron, Jon Relton, Caroline Suderman, Matt Tilling, Kate |
author_facet | Mills, Harriet L Heron, Jon Relton, Caroline Suderman, Matt Tilling, Kate |
author_sort | Mills, Harriet L |
collection | PubMed |
description | Multiple imputation (MI) is a well-established method for dealing with missing data. MI is computationally intensive when imputing missing covariates with high-dimensional outcome data (e.g., DNA methylation data in epigenome-wide association studies (EWAS)), because every outcome variable must be included in the imputation model to avoid biasing associations towards the null. Instead, EWAS analyses are reduced to only complete cases, limiting statistical power and potentially causing bias. We used simulations to compare 5 MI methods for high-dimensional data under 2 missingness mechanisms. All imputation methods had increased power over complete-case (C-C) analyses. Imputing missing values separately for each variable was computationally inefficient, but dividing sites at random into evenly sized bins improved efficiency and gave low bias. Methods imputing solely using subsets of sites identified by the C-C analysis suffered from bias towards the null. However, if these subsets were added into random bins of sites, this bias was reduced. The optimal methods were applied to an EWAS with missingness in covariates. All methods identified additional sites over the C-C analysis, and many of these sites had been replicated in other studies. These methods are also applicable to other high-dimensional data sets, including the rapidly expanding area of “-omics” studies. |
format | Online Article Text |
id | pubmed-6825836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-68258362019-11-07 Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies Mills, Harriet L Heron, Jon Relton, Caroline Suderman, Matt Tilling, Kate Am J Epidemiol Practice of Epidemiology Multiple imputation (MI) is a well-established method for dealing with missing data. MI is computationally intensive when imputing missing covariates with high-dimensional outcome data (e.g., DNA methylation data in epigenome-wide association studies (EWAS)), because every outcome variable must be included in the imputation model to avoid biasing associations towards the null. Instead, EWAS analyses are reduced to only complete cases, limiting statistical power and potentially causing bias. We used simulations to compare 5 MI methods for high-dimensional data under 2 missingness mechanisms. All imputation methods had increased power over complete-case (C-C) analyses. Imputing missing values separately for each variable was computationally inefficient, but dividing sites at random into evenly sized bins improved efficiency and gave low bias. Methods imputing solely using subsets of sites identified by the C-C analysis suffered from bias towards the null. However, if these subsets were added into random bins of sites, this bias was reduced. The optimal methods were applied to an EWAS with missingness in covariates. All methods identified additional sites over the C-C analysis, and many of these sites had been replicated in other studies. These methods are also applicable to other high-dimensional data sets, including the rapidly expanding area of “-omics” studies. Oxford University Press 2019-11 2019-09-05 /pmc/articles/PMC6825836/ /pubmed/31504104 http://dx.doi.org/10.1093/aje/kwz186 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0 (http://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Practice of Epidemiology Mills, Harriet L Heron, Jon Relton, Caroline Suderman, Matt Tilling, Kate Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies |
title | Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies |
title_full | Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies |
title_fullStr | Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies |
title_full_unstemmed | Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies |
title_short | Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies |
title_sort | methods for dealing with missing covariate data in epigenome-wide association studies |
topic | Practice of Epidemiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825836/ https://www.ncbi.nlm.nih.gov/pubmed/31504104 http://dx.doi.org/10.1093/aje/kwz186 |
work_keys_str_mv | AT millsharrietl methodsfordealingwithmissingcovariatedatainepigenomewideassociationstudies AT heronjon methodsfordealingwithmissingcovariatedatainepigenomewideassociationstudies AT reltoncaroline methodsfordealingwithmissingcovariatedatainepigenomewideassociationstudies AT sudermanmatt methodsfordealingwithmissingcovariatedatainepigenomewideassociationstudies AT tillingkate methodsfordealingwithmissingcovariatedatainepigenomewideassociationstudies |