Cargando…
Methods for Dealing With Missing Covariate Data in Epigenome-Wide Association Studies
Multiple imputation (MI) is a well-established method for dealing with missing data. MI is computationally intensive when imputing missing covariates with high-dimensional outcome data (e.g., DNA methylation data in epigenome-wide association studies (EWAS)), because every outcome variable must be i...
Autores principales: | Mills, Harriet L, Heron, Jon, Relton, Caroline, Suderman, Matt, Tilling, Kate |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825836/ https://www.ncbi.nlm.nih.gov/pubmed/31504104 http://dx.doi.org/10.1093/aje/kwz186 |
Ejemplares similares
-
Use of Correct and Incorrect Methods of Accounting for Age in Studies of Epigenetic Accelerated Aging: Implications and Recommendations for Best Practices
por: Krieger, Nancy, et al.
Publicado: (2023) -
Longitudinal analysis strategies for modelling epigenetic trajectories
por: Staley, James R, et al.
Publicado: (2018) -
Epigenome-wide association study of asthma and wheeze in childhood and adolescence
por: Arathimos, Ryan, et al.
Publicado: (2017) -
Joint Modeling of Individual Trajectories, Within-Individual Variability, and a Later Outcome: Systolic Blood Pressure Through Childhood and Left Ventricular Mass in Early Adulthood
por: Parker, Richard M A, et al.
Publicado: (2020) -
Imputation of missing covariate values in epigenome-wide analysis of DNA methylation data
por: Wu, Chong, et al.
Publicado: (2016)