Cargando…

Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules

PURPOSE: Development of therapeutics for retinal disease with improved durability is hampered by inadequate understanding of pharmacokinetic (PK) drivers following intravitreal injection. Previous work shows that hydrodynamic radius is correlated with vitreal half-life over the range of 3 to 7 nm, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Crowell, Susan R., Wang, Kathryn, Famili, Amin, Shatz, Whitney, Loyet, Kelly M., Chang, Vincent, Liu, Yanqiu, Prabhu, Saileta, Kamath, Amrita V., Kelley, Robert F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827426/
https://www.ncbi.nlm.nih.gov/pubmed/31695962
http://dx.doi.org/10.1167/tvst.8.6.1
_version_ 1783465307509096448
author Crowell, Susan R.
Wang, Kathryn
Famili, Amin
Shatz, Whitney
Loyet, Kelly M.
Chang, Vincent
Liu, Yanqiu
Prabhu, Saileta
Kamath, Amrita V.
Kelley, Robert F.
author_facet Crowell, Susan R.
Wang, Kathryn
Famili, Amin
Shatz, Whitney
Loyet, Kelly M.
Chang, Vincent
Liu, Yanqiu
Prabhu, Saileta
Kamath, Amrita V.
Kelley, Robert F.
author_sort Crowell, Susan R.
collection PubMed
description PURPOSE: Development of therapeutics for retinal disease with improved durability is hampered by inadequate understanding of pharmacokinetic (PK) drivers following intravitreal injection. Previous work shows that hydrodynamic radius is correlated with vitreal half-life over the range of 3 to 7 nm, and that charge and hydrophobicity influence systemic clearance. Better understanding the molecular attributes affecting vitreal elimination half-life enables improved design of therapeutics and enhances clinical translatability. METHODS: Impacts of charge and hydrophobicity on vitreal PK in the rabbit were systematically assessed using antibody and antibody fragment (Fab) variant series, including ranibizumab, altered through amino acid changes in hypervariable regions of the light chain. The impact of molecule size on vitreal PK was assessed in the rabbit, nonhuman primate, and human for a range of molecules (1–45 nm, net charge −1324 to +22.9 in rabbit), including published and internal data. RESULTS: No correlation was observed between vitreal PK and charge or hydrophobicity. Equivalent rabbit vitreal PK was observed for ranibizumab and its variants with isoelectric points (pI) in the range of 6.8 to 10.2, and hydrophobicities of the variable domain unit (FvHI) between 1009 and 1296; additional variant series had vitreal PK similarly unaffected by pI (5.4–10.2) and FvHI (1004–1358). Strong correlations were observed between vitreal half-life and hydrodynamic radius for preclinical species (R(2) = 0.8794–0.9366). CONCLUSIONS: Diffusive properties of soluble large molecules, as quantified by hydrodynamic radius, make a key contribution to vitreal elimination, whereas differences in charge or hydrophobicity make minor or negligible contributions. TRANSLATIONAL RELEVANCE: These results support estimation of vitreal elimination rates based on molecular size in relevant preclinical species and humans.
format Online
Article
Text
id pubmed-6827426
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-68274262019-11-06 Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules Crowell, Susan R. Wang, Kathryn Famili, Amin Shatz, Whitney Loyet, Kelly M. Chang, Vincent Liu, Yanqiu Prabhu, Saileta Kamath, Amrita V. Kelley, Robert F. Transl Vis Sci Technol Articles PURPOSE: Development of therapeutics for retinal disease with improved durability is hampered by inadequate understanding of pharmacokinetic (PK) drivers following intravitreal injection. Previous work shows that hydrodynamic radius is correlated with vitreal half-life over the range of 3 to 7 nm, and that charge and hydrophobicity influence systemic clearance. Better understanding the molecular attributes affecting vitreal elimination half-life enables improved design of therapeutics and enhances clinical translatability. METHODS: Impacts of charge and hydrophobicity on vitreal PK in the rabbit were systematically assessed using antibody and antibody fragment (Fab) variant series, including ranibizumab, altered through amino acid changes in hypervariable regions of the light chain. The impact of molecule size on vitreal PK was assessed in the rabbit, nonhuman primate, and human for a range of molecules (1–45 nm, net charge −1324 to +22.9 in rabbit), including published and internal data. RESULTS: No correlation was observed between vitreal PK and charge or hydrophobicity. Equivalent rabbit vitreal PK was observed for ranibizumab and its variants with isoelectric points (pI) in the range of 6.8 to 10.2, and hydrophobicities of the variable domain unit (FvHI) between 1009 and 1296; additional variant series had vitreal PK similarly unaffected by pI (5.4–10.2) and FvHI (1004–1358). Strong correlations were observed between vitreal half-life and hydrodynamic radius for preclinical species (R(2) = 0.8794–0.9366). CONCLUSIONS: Diffusive properties of soluble large molecules, as quantified by hydrodynamic radius, make a key contribution to vitreal elimination, whereas differences in charge or hydrophobicity make minor or negligible contributions. TRANSLATIONAL RELEVANCE: These results support estimation of vitreal elimination rates based on molecular size in relevant preclinical species and humans. The Association for Research in Vision and Ophthalmology 2019-11-01 /pmc/articles/PMC6827426/ /pubmed/31695962 http://dx.doi.org/10.1167/tvst.8.6.1 Text en Copyright 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License.
spellingShingle Articles
Crowell, Susan R.
Wang, Kathryn
Famili, Amin
Shatz, Whitney
Loyet, Kelly M.
Chang, Vincent
Liu, Yanqiu
Prabhu, Saileta
Kamath, Amrita V.
Kelley, Robert F.
Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules
title Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules
title_full Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules
title_fullStr Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules
title_full_unstemmed Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules
title_short Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules
title_sort influence of charge, hydrophobicity, and size on vitreous pharmacokinetics of large molecules
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827426/
https://www.ncbi.nlm.nih.gov/pubmed/31695962
http://dx.doi.org/10.1167/tvst.8.6.1
work_keys_str_mv AT crowellsusanr influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules
AT wangkathryn influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules
AT familiamin influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules
AT shatzwhitney influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules
AT loyetkellym influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules
AT changvincent influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules
AT liuyanqiu influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules
AT prabhusaileta influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules
AT kamathamritav influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules
AT kelleyrobertf influenceofchargehydrophobicityandsizeonvitreouspharmacokineticsoflargemolecules