Cargando…
Differential regulatory network-based quantification and prioritization of key genes underlying cancer drug resistance based on time-course RNA-seq data
Drug resistance is a major cause for the failure of cancer chemotherapy or targeted therapy. However, the molecular regulatory mechanisms controlling the dynamic evolvement of drug resistance remain poorly understood. Thus, it is important to develop methods for identifying key gene regulatory mecha...
Autores principales: | Zhang, Jiajun, Zhu, Wenbo, Wang, Qianliang, Gu, Jiayu, Huang, L. Frank, Sun, Xiaoqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827891/ https://www.ncbi.nlm.nih.gov/pubmed/31682596 http://dx.doi.org/10.1371/journal.pcbi.1007435 |
Ejemplares similares
-
FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer
por: Fu, Yao, et al.
Publicado: (2014) -
Union Exon Based Approach for RNA-Seq Gene Quantification: To Be or Not to Be?
por: Zhao, Shanrong, et al.
Publicado: (2015) -
Network-based identification and prioritization of key transcriptional factors of diabetic kidney disease
por: Ahmed, Ikhlak, et al.
Publicado: (2023) -
Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data
por: Ogris, Christoph, et al.
Publicado: (2021) -
Inference of differential key regulatory networks and mechanistic drug repurposing candidates from scRNA-seq data with SCANet
por: Oubounyt, Mhaned, et al.
Publicado: (2023)