Cargando…

Application-Specific Oxide-Based and Metal–Dielectric Thin-Film Materials Prepared by Radio Frequency Magnetron Sputtering

We report on the development of several different thin-film functional material systems prepared by radio frequency (RF) magnetron sputtering at Edith Cowan University nanofabrication labs. While focusing on the RF sputtering process optimizations for new or the previously underexplored material com...

Descripción completa

Detalles Bibliográficos
Autores principales: Nur-E-Alam, Mohammad, Lonsdale, Wade, Vasiliev, Mikhail, Alameh, Kamal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829262/
https://www.ncbi.nlm.nih.gov/pubmed/31640298
http://dx.doi.org/10.3390/ma12203448
Descripción
Sumario:We report on the development of several different thin-film functional material systems prepared by radio frequency (RF) magnetron sputtering at Edith Cowan University nanofabrication labs. While focusing on the RF sputtering process optimizations for new or the previously underexplored material compositions and multilayer structures, we disclose several unforeseen material properties and behaviours. Among these are an unconventional magnetic hysteresis loop with an intermediate saturation state observed in garnet trilayers, and an ultrasensitive magnetic switching behaviour in garnet-oxide composites (GOC). We also report on the unusually high thermal exposure stability observed in some nanoengineered metal–dielectric multilayers. We communicate research results related to the design, prototyping, and practical fabrication of high-performance magneto-optic (MO) materials, oxide-based sensor components, and heat regulation coatings for advanced construction and solar windows.