Cargando…
Silencing of the foot-and-mouth disease virus internal ribosomal entry site by targeting relatively conserved region among serotypes
Foot-and-mouth disease (FMD) is a host-restricted disease of cloven-hoofed animals, such as cattle and pigs. There are seven major serotypes of FMD virus that exhibit high antigenic variation, making vaccine strain selection difficult. However, there is an internal ribosomal entry site (IRES) elemen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831537/ https://www.ncbi.nlm.nih.gov/pubmed/31367998 http://dx.doi.org/10.1007/s11262-019-01696-6 |
Sumario: | Foot-and-mouth disease (FMD) is a host-restricted disease of cloven-hoofed animals, such as cattle and pigs. There are seven major serotypes of FMD virus that exhibit high antigenic variation, making vaccine strain selection difficult. However, there is an internal ribosomal entry site (IRES) element within the 5′ untranslated region of the FMD virus (FMDV) RNA genome that is relatively conserved among FMDV serotypes and could be used as a pan-serotype target for disease interventions. To determine the potential for targeting the IRES as promising drug target, we designed a short interfering RNA (siRNA) targeting a relatively conserved region in the FMDV-IRES. The siRNA affected FMDV-IRES expression but not the expression of the encephalomyocarditis virus or hepatitis C virus IRES. To evaluate the effects of siRNA-mediated silencing, we established cell lines expressing a bicistronic luciferase reporter plasmid, which contained an FMDV-IRES element between the Renilla and firefly luciferase genes. The designed siRNA inhibited FMDV-IRES-mediated translation in a concentration-dependent manner. In order to sustain this inhibitory effect, we designed a short hairpin RNA (shRNA)-expressing lentiviral vector. The results showed that the lenti-shRNA vector significantly suppressed FMDV-IRES activity for up to 2 weeks in cell culture. Thus, our findings in this study provided a basis for the development of effective pan-serotype FMDV inhibitors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11262-019-01696-6) contains supplementary material, which is available to authorized users. |
---|