Cargando…

Fruit Detection and Segmentation for Apple Harvesting Using Visual Sensor in Orchards

Autonomous harvesting shows a promising prospect in the future development of the agriculture industry, while the vision system is one of the most challenging components in the autonomous harvesting technologies. This work proposes a multi-function network to perform the real-time detection and sema...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Hanwen, Chen, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832306/
https://www.ncbi.nlm.nih.gov/pubmed/31652634
http://dx.doi.org/10.3390/s19204599
Descripción
Sumario:Autonomous harvesting shows a promising prospect in the future development of the agriculture industry, while the vision system is one of the most challenging components in the autonomous harvesting technologies. This work proposes a multi-function network to perform the real-time detection and semantic segmentation of apples and branches in orchard environments by using the visual sensor. The developed detection and segmentation network utilises the atrous spatial pyramid pooling and the gate feature pyramid network to enhance feature extraction ability of the network. To improve the real-time computation performance of the network model, a lightweight backbone network based on the residual network architecture is developed. From the experimental results, the detection and segmentation network with ResNet-101 backbone outperformed on the detection and segmentation tasks, achieving an [Formula: see text] score of 0.832 on the detection of apples and 87.6% and 77.2% on the semantic segmentation of apples and branches, respectively. The network model with lightweight backbone showed the best computation efficiency in the results. It achieved an [Formula: see text] score of 0.827 on the detection of apples and 86.5% and 75.7% on the segmentation of apples and branches, respectively. The weights size and computation time of the network model with lightweight backbone were 12.8 M and 32 ms, respectively. The experimental results show that the detection and segmentation network can effectively perform the real-time detection and segmentation of apples and branches in orchards.