Cargando…
Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment
Gene therapy for osteoarthritis offers powerful, long-lasting tools that are well adapted to treat such a slow, progressive disorder, especially those therapies based on the clinically adapted recombinant adeno-associated viral (rAAV) vectors. Here, we examined the ability of an rAAV construct carry...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832991/ https://www.ncbi.nlm.nih.gov/pubmed/31591319 http://dx.doi.org/10.3390/jcm8101637 |
_version_ | 1783466273858912256 |
---|---|
author | Daniels, Oliver Frisch, Janina Venkatesan, Jagadeesh K. Rey-Rico, Ana Schmitt, Gertrud Cucchiarini, Magali |
author_facet | Daniels, Oliver Frisch, Janina Venkatesan, Jagadeesh K. Rey-Rico, Ana Schmitt, Gertrud Cucchiarini, Magali |
author_sort | Daniels, Oliver |
collection | PubMed |
description | Gene therapy for osteoarthritis offers powerful, long-lasting tools that are well adapted to treat such a slow, progressive disorder, especially those therapies based on the clinically adapted recombinant adeno-associated viral (rAAV) vectors. Here, we examined the ability of an rAAV construct carrying a therapeutic sequence for the cartilage-specific SOX9 transcription factor to modulate the phenotype of human osteoarthritic articular chondrocytes compared with normal chondrocytes in a three-dimensional environment where the cells are embedded in their extracellular matrix. Successful sox9 overexpression via rAAV was noted for at least 21 days, leading to the significant production of major matrix components (proteoglycans, type-II collagen) without affecting the proliferation of the cells, while the cells contained premature hypertrophic processes relative to control conditions (reporter rAAV-lacZ application, absence of vector treatment). These findings show the value of using rAAV to adjust the osteoarthritic phenotype when the chondrocytes are confined in their inherently altered environment and the possibility of impacting key cellular processes via gene therapy to remodel human osteoarthritic cartilage lesions. |
format | Online Article Text |
id | pubmed-6832991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68329912019-11-25 Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment Daniels, Oliver Frisch, Janina Venkatesan, Jagadeesh K. Rey-Rico, Ana Schmitt, Gertrud Cucchiarini, Magali J Clin Med Article Gene therapy for osteoarthritis offers powerful, long-lasting tools that are well adapted to treat such a slow, progressive disorder, especially those therapies based on the clinically adapted recombinant adeno-associated viral (rAAV) vectors. Here, we examined the ability of an rAAV construct carrying a therapeutic sequence for the cartilage-specific SOX9 transcription factor to modulate the phenotype of human osteoarthritic articular chondrocytes compared with normal chondrocytes in a three-dimensional environment where the cells are embedded in their extracellular matrix. Successful sox9 overexpression via rAAV was noted for at least 21 days, leading to the significant production of major matrix components (proteoglycans, type-II collagen) without affecting the proliferation of the cells, while the cells contained premature hypertrophic processes relative to control conditions (reporter rAAV-lacZ application, absence of vector treatment). These findings show the value of using rAAV to adjust the osteoarthritic phenotype when the chondrocytes are confined in their inherently altered environment and the possibility of impacting key cellular processes via gene therapy to remodel human osteoarthritic cartilage lesions. MDPI 2019-10-07 /pmc/articles/PMC6832991/ /pubmed/31591319 http://dx.doi.org/10.3390/jcm8101637 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Daniels, Oliver Frisch, Janina Venkatesan, Jagadeesh K. Rey-Rico, Ana Schmitt, Gertrud Cucchiarini, Magali Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment |
title | Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment |
title_full | Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment |
title_fullStr | Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment |
title_full_unstemmed | Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment |
title_short | Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment |
title_sort | effects of raav-mediated sox9 overexpression on the biological activities of human osteoarthritic articular chondrocytes in their intrinsic three-dimensional environment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832991/ https://www.ncbi.nlm.nih.gov/pubmed/31591319 http://dx.doi.org/10.3390/jcm8101637 |
work_keys_str_mv | AT danielsoliver effectsofraavmediatedsox9overexpressiononthebiologicalactivitiesofhumanosteoarthriticarticularchondrocytesintheirintrinsicthreedimensionalenvironment AT frischjanina effectsofraavmediatedsox9overexpressiononthebiologicalactivitiesofhumanosteoarthriticarticularchondrocytesintheirintrinsicthreedimensionalenvironment AT venkatesanjagadeeshk effectsofraavmediatedsox9overexpressiononthebiologicalactivitiesofhumanosteoarthriticarticularchondrocytesintheirintrinsicthreedimensionalenvironment AT reyricoana effectsofraavmediatedsox9overexpressiononthebiologicalactivitiesofhumanosteoarthriticarticularchondrocytesintheirintrinsicthreedimensionalenvironment AT schmittgertrud effectsofraavmediatedsox9overexpressiononthebiologicalactivitiesofhumanosteoarthriticarticularchondrocytesintheirintrinsicthreedimensionalenvironment AT cucchiarinimagali effectsofraavmediatedsox9overexpressiononthebiologicalactivitiesofhumanosteoarthriticarticularchondrocytesintheirintrinsicthreedimensionalenvironment |