Cargando…

An Alignment Method for Strapdown Inertial Navigation Systems Assisted by Doppler Radar on a Vehicle-Borne Moving Base

In this study, we investigated a novel method for high-accuracy autonomous alignment of a strapdown inertial navigation system assisted by Doppler radar on a vehicle-borne moving base, which effectively avoids the measurement errors caused by wheel-slip or vehicle-sliding. Using the gyroscopes in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Bo, Xi, Jianxiang, Yang, Jian, Xue, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832996/
https://www.ncbi.nlm.nih.gov/pubmed/31640227
http://dx.doi.org/10.3390/s19204577
Descripción
Sumario:In this study, we investigated a novel method for high-accuracy autonomous alignment of a strapdown inertial navigation system assisted by Doppler radar on a vehicle-borne moving base, which effectively avoids the measurement errors caused by wheel-slip or vehicle-sliding. Using the gyroscopes in a strapdown inertial navigation system and Doppler radar, we calculated the dead reckoning, analyzed the error sources of the dead reckoning system, and established an error model. Then the errors of the strapdown inertial navigation system and dead reckoning system were treated as the states. Besides velocity information, attitude information was cleverly introduced into the alignment measurement to improve alignment accuracy and reduce alignment time. Therefore, the first measurement was the difference between the output attitude and velocity of the strapdown inertial navigation system and the corresponding signals from the dead reckoning system. In order to further improve the alignment accuracy, more measurement information was introduced by using the vehicle motion constraint, that is, the velocity output projection of strapdown inertial navigation system along the transverse and vertical direction of the vehicle body was also used as the second measurement. Then the corresponding state and measurement equations were established, and the Kalman filter algorithm was used for assisted alignment filtering. The simulation results showed that, with a moving base, the misalignment angle estimation accuracy was better than 0.5’ in the east direction, 0.4’ in the north direction, and 3.2’ in the vertical direction.