Cargando…
De novo Nanopore read quality improvement using deep learning
BACKGROUND: Long read sequencing technologies such as Oxford Nanopore can greatly decrease the complexity of de novo genome assembly and large structural variation identification. Currently Nanopore reads have high error rates, and the errors often cluster into low-quality segments within the reads....
Autores principales: | LaPierre, Nathan, Egan, Rob, Wang, Wei, Wang, Zhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833143/ https://www.ncbi.nlm.nih.gov/pubmed/31694525 http://dx.doi.org/10.1186/s12859-019-3103-z |
Ejemplares similares
-
QSRA – a quality-value guided de novo short read assembler
por: Bryant, Douglas W, et al.
Publicado: (2009) -
GPU acceleration of Darwin read overlapper for de novo assembly of long DNA reads
por: Ahmed, Nauman, et al.
Publicado: (2020) -
DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning
por: Boemo, Michael A.
Publicado: (2021) -
InMut-finder: a software tool for insertion identification in mutagenesis using Nanopore long reads
por: Song, Rui, et al.
Publicado: (2021) -
HAPDeNovo: a haplotype-based approach for filtering and phasing de novo mutations in linked read sequencing data
por: Zhou, Xin, et al.
Publicado: (2018)