Cargando…
Prediction of PD-L1 inhibition effects for HIV-infected individuals
The novel therapies with immune checkpoint inhibitors hold great promises for patients with chronic virus infections and cancers. This is based mainly on the partial reversal of the exhausted phenotype of antigen-specific cytotoxic CD8 T cells (CTL). Recently, we have shown that the restoration of H...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834253/ https://www.ncbi.nlm.nih.gov/pubmed/31693657 http://dx.doi.org/10.1371/journal.pcbi.1007401 |
_version_ | 1783466453237760000 |
---|---|
author | Zheltkova, Valerya Argilaguet, Jordi Peligero, Cristina Bocharov, Gennady Meyerhans, Andreas |
author_facet | Zheltkova, Valerya Argilaguet, Jordi Peligero, Cristina Bocharov, Gennady Meyerhans, Andreas |
author_sort | Zheltkova, Valerya |
collection | PubMed |
description | The novel therapies with immune checkpoint inhibitors hold great promises for patients with chronic virus infections and cancers. This is based mainly on the partial reversal of the exhausted phenotype of antigen-specific cytotoxic CD8 T cells (CTL). Recently, we have shown that the restoration of HIV-specific T cell function depends on the HIV infection stage of an infected individual. Here we aimed to answer two fundamental questions: (i) Can one estimate growth parameters for the HIV-specific proliferative responsiveness upon PD-L1 blockade ex vivo? (ii) Can one use these parameter estimates to predict clinical benefit for HIV-infected individuals displaying diverse infection phenotypes? To answer these questions, we first analyzed HIV-1 Gag-specific CD8 T cell proliferation by time-resolved CFSE assays and estimated the effect of PD-L1 blockade on division and death rates, and specific precursor frequencies. These values were then incorporated into a model for CTL-mediated HIV control and the effects on CTL frequencies, viral loads and CD4 T cell counts were predicted for different infection phenotypes. The biggest absolute increase in CD4 T cell counts was in the group of slow progressors while the strongest reduction in virus loads was observed in progressor patients. These results suggest a significant clinical benefit only for a subgroup of HIV-infected individuals. However, as PD1 is a marker of lymphocyte activation and expressed on several lymphocyte subsets including also CD4 T cells and B cells, we subsequently examined the multiple effects of anti-PD-L1 blockade beyond those on CD8 T cells. This extended model then predicts that the net effect on HIV load and CD4 T cell number depends on the interplay between positive and negative effects of lymphocyte subset activation. For a physiologically relevant range of affected model parameters, PD-L1 blockade is likely to be overall beneficial for HIV-infected individuals. |
format | Online Article Text |
id | pubmed-6834253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-68342532019-11-14 Prediction of PD-L1 inhibition effects for HIV-infected individuals Zheltkova, Valerya Argilaguet, Jordi Peligero, Cristina Bocharov, Gennady Meyerhans, Andreas PLoS Comput Biol Research Article The novel therapies with immune checkpoint inhibitors hold great promises for patients with chronic virus infections and cancers. This is based mainly on the partial reversal of the exhausted phenotype of antigen-specific cytotoxic CD8 T cells (CTL). Recently, we have shown that the restoration of HIV-specific T cell function depends on the HIV infection stage of an infected individual. Here we aimed to answer two fundamental questions: (i) Can one estimate growth parameters for the HIV-specific proliferative responsiveness upon PD-L1 blockade ex vivo? (ii) Can one use these parameter estimates to predict clinical benefit for HIV-infected individuals displaying diverse infection phenotypes? To answer these questions, we first analyzed HIV-1 Gag-specific CD8 T cell proliferation by time-resolved CFSE assays and estimated the effect of PD-L1 blockade on division and death rates, and specific precursor frequencies. These values were then incorporated into a model for CTL-mediated HIV control and the effects on CTL frequencies, viral loads and CD4 T cell counts were predicted for different infection phenotypes. The biggest absolute increase in CD4 T cell counts was in the group of slow progressors while the strongest reduction in virus loads was observed in progressor patients. These results suggest a significant clinical benefit only for a subgroup of HIV-infected individuals. However, as PD1 is a marker of lymphocyte activation and expressed on several lymphocyte subsets including also CD4 T cells and B cells, we subsequently examined the multiple effects of anti-PD-L1 blockade beyond those on CD8 T cells. This extended model then predicts that the net effect on HIV load and CD4 T cell number depends on the interplay between positive and negative effects of lymphocyte subset activation. For a physiologically relevant range of affected model parameters, PD-L1 blockade is likely to be overall beneficial for HIV-infected individuals. Public Library of Science 2019-11-06 /pmc/articles/PMC6834253/ /pubmed/31693657 http://dx.doi.org/10.1371/journal.pcbi.1007401 Text en © 2019 Zheltkova et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zheltkova, Valerya Argilaguet, Jordi Peligero, Cristina Bocharov, Gennady Meyerhans, Andreas Prediction of PD-L1 inhibition effects for HIV-infected individuals |
title | Prediction of PD-L1 inhibition effects for HIV-infected individuals |
title_full | Prediction of PD-L1 inhibition effects for HIV-infected individuals |
title_fullStr | Prediction of PD-L1 inhibition effects for HIV-infected individuals |
title_full_unstemmed | Prediction of PD-L1 inhibition effects for HIV-infected individuals |
title_short | Prediction of PD-L1 inhibition effects for HIV-infected individuals |
title_sort | prediction of pd-l1 inhibition effects for hiv-infected individuals |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834253/ https://www.ncbi.nlm.nih.gov/pubmed/31693657 http://dx.doi.org/10.1371/journal.pcbi.1007401 |
work_keys_str_mv | AT zheltkovavalerya predictionofpdl1inhibitioneffectsforhivinfectedindividuals AT argilaguetjordi predictionofpdl1inhibitioneffectsforhivinfectedindividuals AT peligerocristina predictionofpdl1inhibitioneffectsforhivinfectedindividuals AT bocharovgennady predictionofpdl1inhibitioneffectsforhivinfectedindividuals AT meyerhansandreas predictionofpdl1inhibitioneffectsforhivinfectedindividuals |