Cargando…
A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target
Antiarrhythmic treatment strategies remain suboptimal due to our inability to predict how drug interactions with ion channels will affect the ability of the tissues to initiate and sustain an arrhythmia. We built a multiscale molecular model of the Na(+) channel domain III (domain III voltage-sensin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834944/ https://www.ncbi.nlm.nih.gov/pubmed/31709321 http://dx.doi.org/10.1016/j.jacbts.2019.06.002 |
_version_ | 1783466567216922624 |
---|---|
author | Moreno, Jonathan D. Zhu, Wandi Mangold, Kathryn Chung, Woenho Silva, Jonathan R. |
author_facet | Moreno, Jonathan D. Zhu, Wandi Mangold, Kathryn Chung, Woenho Silva, Jonathan R. |
author_sort | Moreno, Jonathan D. |
collection | PubMed |
description | Antiarrhythmic treatment strategies remain suboptimal due to our inability to predict how drug interactions with ion channels will affect the ability of the tissues to initiate and sustain an arrhythmia. We built a multiscale molecular model of the Na(+) channel domain III (domain III voltage-sensing domain) to highlight the molecular underpinnings responsible for mexiletine drug efficacy. This model predicts that a hyperpolarizing shift in the domain III voltage-sensing domain is critical for drug efficacy and may be leveraged to design more potent Class I molecules. The model was therefore used to design, in silico, a theoretical mexiletine booster that can dramatically rescue a mutant resistant to the potent antiarrhythmic effects of mexiletine. Our framework provides a strategy for in silico design of precision-targeted therapeutic agents that simultaneously assesses antiarrhythmic markers of success and failure at multiple spatial and time scales. This approach provides a roadmap for the design of novel molecular-based therapy to treat myriad arrhythmia syndromes, including ventricular tachycardia, heart failure arrhythmias, and inherited arrhythmia syndromes. |
format | Online Article Text |
id | pubmed-6834944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68349442019-11-08 A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target Moreno, Jonathan D. Zhu, Wandi Mangold, Kathryn Chung, Woenho Silva, Jonathan R. JACC Basic Transl Sci TRANSLATIONAL MODEL Antiarrhythmic treatment strategies remain suboptimal due to our inability to predict how drug interactions with ion channels will affect the ability of the tissues to initiate and sustain an arrhythmia. We built a multiscale molecular model of the Na(+) channel domain III (domain III voltage-sensing domain) to highlight the molecular underpinnings responsible for mexiletine drug efficacy. This model predicts that a hyperpolarizing shift in the domain III voltage-sensing domain is critical for drug efficacy and may be leveraged to design more potent Class I molecules. The model was therefore used to design, in silico, a theoretical mexiletine booster that can dramatically rescue a mutant resistant to the potent antiarrhythmic effects of mexiletine. Our framework provides a strategy for in silico design of precision-targeted therapeutic agents that simultaneously assesses antiarrhythmic markers of success and failure at multiple spatial and time scales. This approach provides a roadmap for the design of novel molecular-based therapy to treat myriad arrhythmia syndromes, including ventricular tachycardia, heart failure arrhythmias, and inherited arrhythmia syndromes. Elsevier 2019-10-28 /pmc/articles/PMC6834944/ /pubmed/31709321 http://dx.doi.org/10.1016/j.jacbts.2019.06.002 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | TRANSLATIONAL MODEL Moreno, Jonathan D. Zhu, Wandi Mangold, Kathryn Chung, Woenho Silva, Jonathan R. A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target |
title | A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target |
title_full | A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target |
title_fullStr | A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target |
title_full_unstemmed | A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target |
title_short | A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target |
title_sort | molecularly detailed na(v)1.5 model reveals a new class i antiarrhythmic target |
topic | TRANSLATIONAL MODEL |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834944/ https://www.ncbi.nlm.nih.gov/pubmed/31709321 http://dx.doi.org/10.1016/j.jacbts.2019.06.002 |
work_keys_str_mv | AT morenojonathand amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget AT zhuwandi amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget AT mangoldkathryn amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget AT chungwoenho amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget AT silvajonathanr amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget AT morenojonathand molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget AT zhuwandi molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget AT mangoldkathryn molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget AT chungwoenho molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget AT silvajonathanr molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget |