Cargando…

A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target

Antiarrhythmic treatment strategies remain suboptimal due to our inability to predict how drug interactions with ion channels will affect the ability of the tissues to initiate and sustain an arrhythmia. We built a multiscale molecular model of the Na(+) channel domain III (domain III voltage-sensin...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno, Jonathan D., Zhu, Wandi, Mangold, Kathryn, Chung, Woenho, Silva, Jonathan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834944/
https://www.ncbi.nlm.nih.gov/pubmed/31709321
http://dx.doi.org/10.1016/j.jacbts.2019.06.002
_version_ 1783466567216922624
author Moreno, Jonathan D.
Zhu, Wandi
Mangold, Kathryn
Chung, Woenho
Silva, Jonathan R.
author_facet Moreno, Jonathan D.
Zhu, Wandi
Mangold, Kathryn
Chung, Woenho
Silva, Jonathan R.
author_sort Moreno, Jonathan D.
collection PubMed
description Antiarrhythmic treatment strategies remain suboptimal due to our inability to predict how drug interactions with ion channels will affect the ability of the tissues to initiate and sustain an arrhythmia. We built a multiscale molecular model of the Na(+) channel domain III (domain III voltage-sensing domain) to highlight the molecular underpinnings responsible for mexiletine drug efficacy. This model predicts that a hyperpolarizing shift in the domain III voltage-sensing domain is critical for drug efficacy and may be leveraged to design more potent Class I molecules. The model was therefore used to design, in silico, a theoretical mexiletine booster that can dramatically rescue a mutant resistant to the potent antiarrhythmic effects of mexiletine. Our framework provides a strategy for in silico design of precision-targeted therapeutic agents that simultaneously assesses antiarrhythmic markers of success and failure at multiple spatial and time scales. This approach provides a roadmap for the design of novel molecular-based therapy to treat myriad arrhythmia syndromes, including ventricular tachycardia, heart failure arrhythmias, and inherited arrhythmia syndromes.
format Online
Article
Text
id pubmed-6834944
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68349442019-11-08 A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target Moreno, Jonathan D. Zhu, Wandi Mangold, Kathryn Chung, Woenho Silva, Jonathan R. JACC Basic Transl Sci TRANSLATIONAL MODEL Antiarrhythmic treatment strategies remain suboptimal due to our inability to predict how drug interactions with ion channels will affect the ability of the tissues to initiate and sustain an arrhythmia. We built a multiscale molecular model of the Na(+) channel domain III (domain III voltage-sensing domain) to highlight the molecular underpinnings responsible for mexiletine drug efficacy. This model predicts that a hyperpolarizing shift in the domain III voltage-sensing domain is critical for drug efficacy and may be leveraged to design more potent Class I molecules. The model was therefore used to design, in silico, a theoretical mexiletine booster that can dramatically rescue a mutant resistant to the potent antiarrhythmic effects of mexiletine. Our framework provides a strategy for in silico design of precision-targeted therapeutic agents that simultaneously assesses antiarrhythmic markers of success and failure at multiple spatial and time scales. This approach provides a roadmap for the design of novel molecular-based therapy to treat myriad arrhythmia syndromes, including ventricular tachycardia, heart failure arrhythmias, and inherited arrhythmia syndromes. Elsevier 2019-10-28 /pmc/articles/PMC6834944/ /pubmed/31709321 http://dx.doi.org/10.1016/j.jacbts.2019.06.002 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle TRANSLATIONAL MODEL
Moreno, Jonathan D.
Zhu, Wandi
Mangold, Kathryn
Chung, Woenho
Silva, Jonathan R.
A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target
title A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target
title_full A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target
title_fullStr A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target
title_full_unstemmed A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target
title_short A Molecularly Detailed Na(V)1.5 Model Reveals a New Class I Antiarrhythmic Target
title_sort molecularly detailed na(v)1.5 model reveals a new class i antiarrhythmic target
topic TRANSLATIONAL MODEL
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834944/
https://www.ncbi.nlm.nih.gov/pubmed/31709321
http://dx.doi.org/10.1016/j.jacbts.2019.06.002
work_keys_str_mv AT morenojonathand amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget
AT zhuwandi amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget
AT mangoldkathryn amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget
AT chungwoenho amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget
AT silvajonathanr amolecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget
AT morenojonathand molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget
AT zhuwandi molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget
AT mangoldkathryn molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget
AT chungwoenho molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget
AT silvajonathanr molecularlydetailednav15modelrevealsanewclassiantiarrhythmictarget