Cargando…

Formation and Characterization of Hole Nanopattern on Photoresist Layer by Scanning Near-Field Optical Microscope

Patterning of lines of holes on a layer of positive photoresist SX AR-P 3500/6 (Allresist GmbH, Strausberg, Germany) spin-coated on a quartz substrate is carried out by using scanning near-field optical lithography. A green 532 nm-wavelength laser, focused on a backside of a nanoprobe of 90 nm diame...

Descripción completa

Detalles Bibliográficos
Autores principales: Roszkiewicz, Agata, Jain, Amrita, Teodorczyk, Marian, Nasalski, Wojciech
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836312/
https://www.ncbi.nlm.nih.gov/pubmed/31614828
http://dx.doi.org/10.3390/nano9101452
Descripción
Sumario:Patterning of lines of holes on a layer of positive photoresist SX AR-P 3500/6 (Allresist GmbH, Strausberg, Germany) spin-coated on a quartz substrate is carried out by using scanning near-field optical lithography. A green 532 nm-wavelength laser, focused on a backside of a nanoprobe of 90 nm diameter, is used as a light source. As a result, after optimization of parameters like laser power, exposure time, or sleep time, it is confirmed that it is possible to obtain a uniform nanopattern structure in the photoresist layer. In addition, the lines of holes are characterized by a uniform depth (71–87 nm) and relatively high aspect ratio ranging from 0.22 to 0.26. Numerical modelling performed with a rigorous method shows that such a structure can be potentially used as a phase zone plate.