Cargando…
Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature
CRISPR-Cas is a powerful genome editing technology and has a great potential for in vivo gene therapy. Successful translational application of CRISPR-Cas to biomedicine still faces many safety concerns, including off-target side effect, cell fitness problem after CRISPR-Cas treatment, and on-target...
Autores principales: | Liu, Qiao, He, Di, Xie, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837542/ https://www.ncbi.nlm.nih.gov/pubmed/31658261 http://dx.doi.org/10.1371/journal.pcbi.1007480 |
Ejemplares similares
-
Off-target predictions in CRISPR-Cas9 gene editing using deep learning
por: Lin, Jiecong, et al.
Publicado: (2018) -
piCRISPR: Physically informed deep learning models for CRISPR/Cas9 off-target cleavage prediction
por: Störtz, Florian, et al.
Publicado: (2023) -
Predicting CRISPR/Cas9 Repair Outcomes by Attention-Based Deep Learning Framework
por: Liu, Xiuqin, et al.
Publicado: (2022) -
Boosting plant immunity with CRISPR/Cas
por: Chaparro-Garcia, Angela, et al.
Publicado: (2015) -
Hybrid Multitask Learning Reveals Sequence Features Driving Specificity in the CRISPR/Cas9 System
por: Vora, Dhvani Sandip, et al.
Publicado: (2023)