Cargando…

Improved polygenic prediction by Bayesian multiple regression on summary statistics

Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studie...

Descripción completa

Detalles Bibliográficos
Autores principales: Lloyd-Jones, Luke R., Zeng, Jian, Sidorenko, Julia, Yengo, Loïc, Moser, Gerhard, Kemper, Kathryn E., Wang, Huanwei, Zheng, Zhili, Magi, Reedik, Esko, Tõnu, Metspalu, Andres, Wray, Naomi R., Goddard, Michael E., Yang, Jian, Visscher, Peter M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841727/
https://www.ncbi.nlm.nih.gov/pubmed/31704910
http://dx.doi.org/10.1038/s41467-019-12653-0
_version_ 1783467953250893824
author Lloyd-Jones, Luke R.
Zeng, Jian
Sidorenko, Julia
Yengo, Loïc
Moser, Gerhard
Kemper, Kathryn E.
Wang, Huanwei
Zheng, Zhili
Magi, Reedik
Esko, Tõnu
Metspalu, Andres
Wray, Naomi R.
Goddard, Michael E.
Yang, Jian
Visscher, Peter M.
author_facet Lloyd-Jones, Luke R.
Zeng, Jian
Sidorenko, Julia
Yengo, Loïc
Moser, Gerhard
Kemper, Kathryn E.
Wang, Huanwei
Zheng, Zhili
Magi, Reedik
Esko, Tõnu
Metspalu, Andres
Wray, Naomi R.
Goddard, Michael E.
Yang, Jian
Visscher, Peter M.
author_sort Lloyd-Jones, Luke R.
collection PubMed
description Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using 12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR improves prediction accuracy relative to commonly used state-of-the-art summary statistics methods at a fraction of the computational resources. Furthermore, using summary statistics for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we show that on average across traits and two independent data sets that SBayesR improves prediction R(2) by 5.2% relative to LDpred and by 26.5% relative to clumping and p value thresholding.
format Online
Article
Text
id pubmed-6841727
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68417272019-11-13 Improved polygenic prediction by Bayesian multiple regression on summary statistics Lloyd-Jones, Luke R. Zeng, Jian Sidorenko, Julia Yengo, Loïc Moser, Gerhard Kemper, Kathryn E. Wang, Huanwei Zheng, Zhili Magi, Reedik Esko, Tõnu Metspalu, Andres Wray, Naomi R. Goddard, Michael E. Yang, Jian Visscher, Peter M. Nat Commun Article Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using 12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR improves prediction accuracy relative to commonly used state-of-the-art summary statistics methods at a fraction of the computational resources. Furthermore, using summary statistics for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we show that on average across traits and two independent data sets that SBayesR improves prediction R(2) by 5.2% relative to LDpred and by 26.5% relative to clumping and p value thresholding. Nature Publishing Group UK 2019-11-08 /pmc/articles/PMC6841727/ /pubmed/31704910 http://dx.doi.org/10.1038/s41467-019-12653-0 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Lloyd-Jones, Luke R.
Zeng, Jian
Sidorenko, Julia
Yengo, Loïc
Moser, Gerhard
Kemper, Kathryn E.
Wang, Huanwei
Zheng, Zhili
Magi, Reedik
Esko, Tõnu
Metspalu, Andres
Wray, Naomi R.
Goddard, Michael E.
Yang, Jian
Visscher, Peter M.
Improved polygenic prediction by Bayesian multiple regression on summary statistics
title Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_full Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_fullStr Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_full_unstemmed Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_short Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_sort improved polygenic prediction by bayesian multiple regression on summary statistics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841727/
https://www.ncbi.nlm.nih.gov/pubmed/31704910
http://dx.doi.org/10.1038/s41467-019-12653-0
work_keys_str_mv AT lloydjonesluker improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT zengjian improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT sidorenkojulia improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT yengoloic improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT mosergerhard improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT kemperkathryne improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT wanghuanwei improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT zhengzhili improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT magireedik improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT eskotonu improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT metspaluandres improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT wraynaomir improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT goddardmichaele improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT yangjian improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT visscherpeterm improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics