Cargando…
Improved polygenic prediction by Bayesian multiple regression on summary statistics
Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studie...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841727/ https://www.ncbi.nlm.nih.gov/pubmed/31704910 http://dx.doi.org/10.1038/s41467-019-12653-0 |
_version_ | 1783467953250893824 |
---|---|
author | Lloyd-Jones, Luke R. Zeng, Jian Sidorenko, Julia Yengo, Loïc Moser, Gerhard Kemper, Kathryn E. Wang, Huanwei Zheng, Zhili Magi, Reedik Esko, Tõnu Metspalu, Andres Wray, Naomi R. Goddard, Michael E. Yang, Jian Visscher, Peter M. |
author_facet | Lloyd-Jones, Luke R. Zeng, Jian Sidorenko, Julia Yengo, Loïc Moser, Gerhard Kemper, Kathryn E. Wang, Huanwei Zheng, Zhili Magi, Reedik Esko, Tõnu Metspalu, Andres Wray, Naomi R. Goddard, Michael E. Yang, Jian Visscher, Peter M. |
author_sort | Lloyd-Jones, Luke R. |
collection | PubMed |
description | Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using 12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR improves prediction accuracy relative to commonly used state-of-the-art summary statistics methods at a fraction of the computational resources. Furthermore, using summary statistics for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we show that on average across traits and two independent data sets that SBayesR improves prediction R(2) by 5.2% relative to LDpred and by 26.5% relative to clumping and p value thresholding. |
format | Online Article Text |
id | pubmed-6841727 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-68417272019-11-13 Improved polygenic prediction by Bayesian multiple regression on summary statistics Lloyd-Jones, Luke R. Zeng, Jian Sidorenko, Julia Yengo, Loïc Moser, Gerhard Kemper, Kathryn E. Wang, Huanwei Zheng, Zhili Magi, Reedik Esko, Tõnu Metspalu, Andres Wray, Naomi R. Goddard, Michael E. Yang, Jian Visscher, Peter M. Nat Commun Article Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using 12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR improves prediction accuracy relative to commonly used state-of-the-art summary statistics methods at a fraction of the computational resources. Furthermore, using summary statistics for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we show that on average across traits and two independent data sets that SBayesR improves prediction R(2) by 5.2% relative to LDpred and by 26.5% relative to clumping and p value thresholding. Nature Publishing Group UK 2019-11-08 /pmc/articles/PMC6841727/ /pubmed/31704910 http://dx.doi.org/10.1038/s41467-019-12653-0 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lloyd-Jones, Luke R. Zeng, Jian Sidorenko, Julia Yengo, Loïc Moser, Gerhard Kemper, Kathryn E. Wang, Huanwei Zheng, Zhili Magi, Reedik Esko, Tõnu Metspalu, Andres Wray, Naomi R. Goddard, Michael E. Yang, Jian Visscher, Peter M. Improved polygenic prediction by Bayesian multiple regression on summary statistics |
title | Improved polygenic prediction by Bayesian multiple regression on summary statistics |
title_full | Improved polygenic prediction by Bayesian multiple regression on summary statistics |
title_fullStr | Improved polygenic prediction by Bayesian multiple regression on summary statistics |
title_full_unstemmed | Improved polygenic prediction by Bayesian multiple regression on summary statistics |
title_short | Improved polygenic prediction by Bayesian multiple regression on summary statistics |
title_sort | improved polygenic prediction by bayesian multiple regression on summary statistics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6841727/ https://www.ncbi.nlm.nih.gov/pubmed/31704910 http://dx.doi.org/10.1038/s41467-019-12653-0 |
work_keys_str_mv | AT lloydjonesluker improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT zengjian improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT sidorenkojulia improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT yengoloic improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT mosergerhard improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT kemperkathryne improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT wanghuanwei improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT zhengzhili improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT magireedik improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT eskotonu improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT metspaluandres improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT wraynaomir improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT goddardmichaele improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT yangjian improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics AT visscherpeterm improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics |