Cargando…
ProtRank: bypassing the imputation of missing values in differential expression analysis of proteomic data
BACKGROUND: Data from discovery proteomic and phosphoproteomic experiments typically include missing values that correspond to proteins that have not been identified in the analyzed sample. Replacing the missing values with random numbers, a process known as “imputation”, avoids apparent infinite fo...
Autores principales: | Medo, Matúš, Aebersold, Daniel M., Medová, Michaela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842221/ https://www.ncbi.nlm.nih.gov/pubmed/31706265 http://dx.doi.org/10.1186/s12859-019-3144-3 |
Ejemplares similares
-
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Missing data and multiple imputation in clinical epidemiological research
por: Pedersen, Alma B, et al.
Publicado: (2017) -
An efficient ensemble method for missing value imputation in microarray gene expression data
por: Zhu, Xinshan, et al.
Publicado: (2021) -
Accounting for one-channel depletion improves missing value imputation in 2-dye microarray data
por: Ritz, Cecilia, et al.
Publicado: (2008) -
Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme
por: Wang, Xian, et al.
Publicado: (2006)