Cargando…

Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs

The aim of the study was to evaluate the ruminal function and microbial community of lamb under different nutrient levels. Sixty-four lambs with similarity body weight were randomly assigned to four groups after weaning off ewe’s milk on the 17th day (6.2 ± 0.2 kg). The lambs of the control group (C...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Kai, Qi, Minli, Wang, Shiqin, Diao, Qiyu, Zhang, Naifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851105/
https://www.ncbi.nlm.nih.gov/pubmed/31719633
http://dx.doi.org/10.1038/s41598-019-53279-y
Descripción
Sumario:The aim of the study was to evaluate the ruminal function and microbial community of lamb under different nutrient levels. Sixty-four lambs with similarity body weight were randomly assigned to four groups after weaning off ewe’s milk on the 17th day (6.2 ± 0.2 kg). The lambs of the control group (CON) were fed a basal diet, and the other three groups were subjected to a diet of decreased protein (PR), digestible energy (ER) or both of them at 20% (BR) of basal diet. The decrease of dietary protein or energy level decreased the average daily gain, ruminal weight and mucosal thickness of lambs (P < 0.05). The total volatile fatty acid (TVFA), acetate and propionate concentration of the CON group were significantly higher than that of the other three groups. The dietary protein and energy level affected the microbial diversity, and low energy level increased the relative abundance of phyla of Fibrobacteres, whereas at the genus level, increased the relative abundance of Butyrivibrio and Prevotellaceae. Under different dietary energy and protein levels, 14 genera exhibited significant correlation with ruminal fermentation. These findings supplied new perspective for the understanding of the dietary effect on ruminal microbial community interactions and are of great significance for establishing the optimal nutrient supply strategy for lambs.