Cargando…

TET enzymes control antibody production and shape the mutational landscape in germinal centre B cells

Upon activation by antigen, B cells form germinal centres where they clonally expand and introduce affinity‐enhancing mutations into their B‐cell receptor genes. Somatic mutagenesis and class switch recombination (CSR) in germinal centre B cells are initiated by the activation‐induced cytidine deami...

Descripción completa

Detalles Bibliográficos
Autores principales: Schoeler, Katia, Aufschnaiter, Andreas, Messner, Simon, Derudder, Emmanuel, Herzog, Sebastian, Villunger, Andreas, Rajewsky, Klaus, Labi, Verena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851767/
https://www.ncbi.nlm.nih.gov/pubmed/31120187
http://dx.doi.org/10.1111/febs.14934
Descripción
Sumario:Upon activation by antigen, B cells form germinal centres where they clonally expand and introduce affinity‐enhancing mutations into their B‐cell receptor genes. Somatic mutagenesis and class switch recombination (CSR) in germinal centre B cells are initiated by the activation‐induced cytidine deaminase (AID). Upon germinal centre exit, B cells differentiate into antibody‐secreting plasma cells. Germinal centre maintenance and terminal fate choice require transcriptional reprogramming that associates with a substantial reconfiguration of DNA methylation patterns. Here we examine the role of ten‐eleven‐translocation (TET) proteins, enzymes that facilitate DNA demethylation and promote a permissive chromatin state by oxidizing 5‐methylcytosine, in antibody‐mediated immunity. Using a conditional gene ablation strategy, we show that TET2 and TET3 guide the transition of germinal centre B cells to antibody‐secreting plasma cells. Optimal AID expression requires TET function, and TET2 and TET3 double‐deficient germinal centre B cells show defects in CSR. However, TET2/TET3 double‐deficiency does not prevent the generation and selection of high‐affinity germinal centre B cells. Rather, combined TET2 and TET3 loss‐of‐function in germinal centre B cells favours C‐to‐T and G‐to‐A transition mutagenesis, a finding that may be of significance for understanding the aetiology of B‐cell lymphomas evolving in conditions of reduced TET function.