Cargando…
Prostate-specific Membrane Antigen Heterogeneity and DNA Repair Defects in Prostate Cancer
BACKGROUND: Prostate-specific membrane antigen (PSMA; folate hydrolase) prostate cancer (PC) expression has theranostic utility. OBJECTIVE: To elucidate PC PSMA expression and associate this with defective DNA damage repair (DDR). DESIGN, SETTING, AND PARTICIPANTS: Membranous PSMA (mPSMA) expression...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853166/ https://www.ncbi.nlm.nih.gov/pubmed/31345636 http://dx.doi.org/10.1016/j.eururo.2019.06.030 |
Sumario: | BACKGROUND: Prostate-specific membrane antigen (PSMA; folate hydrolase) prostate cancer (PC) expression has theranostic utility. OBJECTIVE: To elucidate PC PSMA expression and associate this with defective DNA damage repair (DDR). DESIGN, SETTING, AND PARTICIPANTS: Membranous PSMA (mPSMA) expression was scored immunohistochemically from metastatic castration-resistant PC (mCRPC) and matching, same-patient, diagnostic biopsies, and correlated with next-generation sequencing (NGS) and clinical outcome data. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Expression of mPSMA was quantitated by modified H-score. Patient DNA was tested by NGS. Gene expression and activity scores were determined from mCRPC transcriptomes. Statistical correlations utilised Wilcoxon signed rank tests, survival was estimated by Kaplan-Meier test, and sample heterogeneity was quantified by Shannon's diversity index. RESULTS AND LIMITATIONS: Expression of mPSMA at diagnosis was associated with higher Gleason grade (p = 0.04) and worse overall survival (p = 0.006). Overall, mPSMA expression levels increased at mCRPC (median H-score [interquartile range]: castration-sensitive prostate cancer [CSPC] 17.5 [0.0–60.0] vs mCRPC 55.0 [2.8–117.5]). Surprisingly, 42% (n = 16) of CSPC and 27% (n = 16) of mCRPC tissues sampled had no detectable mPSMA (H-score <10). Marked intratumour heterogeneity of mPSMA expression, with foci containing no detectable PSMA, was observed in all mPSMA expressing CSPC (100%) and 37 (84%) mCRPC biopsies. Heterogeneous intrapatient mPSMA expression between metastases was also observed, with the lowest expression in liver metastases. Tumours with DDR had higher mPSMA expression (p = 0.016; 87.5 [25.0–247.5] vs 20 [0.3–98.8]; difference in medians 60 [5.0–95.0]); validation cohort studies confirmed higher mPSMA expression in patients with deleterious aberrations in BRCA2 (p < 0.001; median H-score: 300 [165–300]; difference in medians 195.0 [100.0–270.0]) and ATM (p = 0.005; 212.5 [136.3–300]; difference in medians 140.0 [55.0–200]) than in molecularly unselected mCRPC biopsies (55.0 [2.75–117.5]). Validation studies using mCRPC transcriptomes corroborated these findings, also indicating that SOX2 high tumours have low PSMA expression. CONCLUSIONS: Membranous PSMA expression is upregulated in some but not all PCs, with mPSMA expression demonstrating marked inter- and intrapatient heterogeneity. DDR aberrations are associated with higher mPSMA expression and merit further evaluation as predictive biomarkers of response for PSMA-targeted therapies in larger, prospective cohorts. PATIENT SUMMARY: Through analysis of prostate cancer samples, we report that the presence of prostate-specific membrane antigen (PSMA) is extremely variable both within one patient and between different patients. This may limit the usefulness of PSMA scans and PSMA-targeted therapies. We show for the first time that prostate cancers with defective DNA repair produce more PSMA and so may respond better to PSMA-targeting treatments. |
---|