Cargando…

The Architecture of Talin1 Reveals an Autoinhibition Mechanism

Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regul...

Descripción completa

Detalles Bibliográficos
Autores principales: Dedden, Dirk, Schumacher, Stephanie, Kelley, Charlotte F., Zacharias, Martin, Biertümpfel, Christian, Fässler, Reinhard, Mizuno, Naoko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856716/
https://www.ncbi.nlm.nih.gov/pubmed/31539492
http://dx.doi.org/10.1016/j.cell.2019.08.034
_version_ 1783470628070752256
author Dedden, Dirk
Schumacher, Stephanie
Kelley, Charlotte F.
Zacharias, Martin
Biertümpfel, Christian
Fässler, Reinhard
Mizuno, Naoko
author_facet Dedden, Dirk
Schumacher, Stephanie
Kelley, Charlotte F.
Zacharias, Martin
Biertümpfel, Christian
Fässler, Reinhard
Mizuno, Naoko
author_sort Dedden, Dirk
collection PubMed
description Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn, the rod domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP(2) at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an ∼60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling.
format Online
Article
Text
id pubmed-6856716
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-68567162019-11-21 The Architecture of Talin1 Reveals an Autoinhibition Mechanism Dedden, Dirk Schumacher, Stephanie Kelley, Charlotte F. Zacharias, Martin Biertümpfel, Christian Fässler, Reinhard Mizuno, Naoko Cell Article Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn, the rod domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP(2) at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an ∼60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling. Cell Press 2019-09-19 /pmc/articles/PMC6856716/ /pubmed/31539492 http://dx.doi.org/10.1016/j.cell.2019.08.034 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Dedden, Dirk
Schumacher, Stephanie
Kelley, Charlotte F.
Zacharias, Martin
Biertümpfel, Christian
Fässler, Reinhard
Mizuno, Naoko
The Architecture of Talin1 Reveals an Autoinhibition Mechanism
title The Architecture of Talin1 Reveals an Autoinhibition Mechanism
title_full The Architecture of Talin1 Reveals an Autoinhibition Mechanism
title_fullStr The Architecture of Talin1 Reveals an Autoinhibition Mechanism
title_full_unstemmed The Architecture of Talin1 Reveals an Autoinhibition Mechanism
title_short The Architecture of Talin1 Reveals an Autoinhibition Mechanism
title_sort architecture of talin1 reveals an autoinhibition mechanism
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856716/
https://www.ncbi.nlm.nih.gov/pubmed/31539492
http://dx.doi.org/10.1016/j.cell.2019.08.034
work_keys_str_mv AT deddendirk thearchitectureoftalin1revealsanautoinhibitionmechanism
AT schumacherstephanie thearchitectureoftalin1revealsanautoinhibitionmechanism
AT kelleycharlottef thearchitectureoftalin1revealsanautoinhibitionmechanism
AT zachariasmartin thearchitectureoftalin1revealsanautoinhibitionmechanism
AT biertumpfelchristian thearchitectureoftalin1revealsanautoinhibitionmechanism
AT fasslerreinhard thearchitectureoftalin1revealsanautoinhibitionmechanism
AT mizunonaoko thearchitectureoftalin1revealsanautoinhibitionmechanism
AT deddendirk architectureoftalin1revealsanautoinhibitionmechanism
AT schumacherstephanie architectureoftalin1revealsanautoinhibitionmechanism
AT kelleycharlottef architectureoftalin1revealsanautoinhibitionmechanism
AT zachariasmartin architectureoftalin1revealsanautoinhibitionmechanism
AT biertumpfelchristian architectureoftalin1revealsanautoinhibitionmechanism
AT fasslerreinhard architectureoftalin1revealsanautoinhibitionmechanism
AT mizunonaoko architectureoftalin1revealsanautoinhibitionmechanism