Cargando…
Bayesian Estimation of Three-Dimensional Chromosomal Structure from Single-Cell Hi-C Data
The problem of three-dimensional (3D) chromosome structure inference from Hi-C data sets is important and challenging. While bulk Hi-C data sets contain contact information derived from millions of cells and can capture major structural features shared by the majority of cells in the sample, they do...
Autores principales: | Rosenthal, Michael, Bryner, Darshan, Huffer, Fred, Evans, Shane, Srivastava, Anuj, Neretti, Nicola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856950/ https://www.ncbi.nlm.nih.gov/pubmed/31211598 http://dx.doi.org/10.1089/cmb.2019.0100 |
Ejemplares similares
-
GINOM: A statistical framework for assessing interval overlap of multiple genomic features
por: Bryner, Darshan, et al.
Publicado: (2017) -
Reconstructing high-resolution chromosome three-dimensional structures by Hi-C complex networks
por: Liu, Tong, et al.
Publicado: (2018) -
HiCImpute: A Bayesian hierarchical model for identifying structural zeros and enhancing single cell Hi-C data
por: Xie, Qing, et al.
Publicado: (2022) -
Chromosome3D: reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing
por: Adhikari, Badri, et al.
Publicado: (2016) -
Hi-C: A Method to Study the Three-dimensional Architecture of Genomes.
por: van Berkum, Nynke L., et al.
Publicado: (2010)