Cargando…

Proteomics-Based Mechanistic Investigation of Escherichia coli Inactivation by Pulsed Electric Field

The pulsed electric field (PEF) technology has been widely applied to inactivate pathogenic bacteria in food products. Though irreversible pore formation and membrane disruption is considered to be the main contributing factor to PEF’s sterilizing effects, the exact molecular mechanisms remain poorl...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhenyu, Zhao, Lingying, Zhang, Qin, Huo, Nan, Shi, Xiaojing, Li, Linwei, Jia, Liyan, Lu, Yuanyuan, Peng, Yong, Song, Yanbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857472/
https://www.ncbi.nlm.nih.gov/pubmed/31781086
http://dx.doi.org/10.3389/fmicb.2019.02644
Descripción
Sumario:The pulsed electric field (PEF) technology has been widely applied to inactivate pathogenic bacteria in food products. Though irreversible pore formation and membrane disruption is considered to be the main contributing factor to PEF’s sterilizing effects, the exact molecular mechanisms remain poorly understood. In this study, by using mass spectrometry (MS)-based label-free quantitative proteomic analysis, we compared the protein profiles of PEF-treated and untreated Escherichia coli. We identified a total of 175 differentially expressed proteins, including 52 candidates that were only detected in at least two of the three samples in one experiment group but not in the other group. Functional analysis revealed that the differential proteins were primarily involved in the regulation of cell membrane composition and integrity, stress response, as well as various metabolic processes. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis was conducted on the genes of selected differential proteins at varying PEF intensities, which were known to result in different cell killing levels. The qRT-PCR data confirmed that the proteomic results could be reliably used for further data interpretation, and that the changes in the expression levels of the differential candidates were, to a large extent, caused directly by the PEF treatment. The findings of the current study offered valuable insight into PEF-induced cell inactivation.