Cargando…
Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release
Protein cleavage inside the cell membrane triggers various patho-physiological signaling pathways, but the mechanism of catalysis is poorly understood. We solved ten structures of the Escherichia coli rhomboid protease in a bicelle membrane undergoing time-resolved steps that encompass the entire pr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858540/ https://www.ncbi.nlm.nih.gov/pubmed/31570873 http://dx.doi.org/10.1038/s41594-019-0296-9 |
_version_ | 1783470973128802304 |
---|---|
author | Cho, Sangwoo Baker, Rosanna P. Ji, Ming Urban, Siniša |
author_facet | Cho, Sangwoo Baker, Rosanna P. Ji, Ming Urban, Siniša |
author_sort | Cho, Sangwoo |
collection | PubMed |
description | Protein cleavage inside the cell membrane triggers various patho-physiological signaling pathways, but the mechanism of catalysis is poorly understood. We solved ten structures of the Escherichia coli rhomboid protease in a bicelle membrane undergoing time-resolved steps that encompass the entire proteolytic reaction on a transmembrane substrate and an aldehyde inhibitor. Extensive gate opening accompanied substrate, but not inhibitor, binding, revealing that substrates and inhibitors take different paths to the active site. Catalysis unexpectedly commenced with, and was guided through subsequent catalytic steps by, motions of an extracellular loop, with local contributions from active site residues. We even captured the elusive tetrahedral intermediate that is uncleaved but covalently attached to the catalytic serine, around which the substrate was forced to bend dramatically. This unexpectedly stable intermediate indicates rhomboid catalysis uses an unprecedented reaction coordinate that may involve mechanically stressing the peptide bond, and could be selectively targeted by inhibitors. |
format | Online Article Text |
id | pubmed-6858540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-68585402020-03-30 Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release Cho, Sangwoo Baker, Rosanna P. Ji, Ming Urban, Siniša Nat Struct Mol Biol Article Protein cleavage inside the cell membrane triggers various patho-physiological signaling pathways, but the mechanism of catalysis is poorly understood. We solved ten structures of the Escherichia coli rhomboid protease in a bicelle membrane undergoing time-resolved steps that encompass the entire proteolytic reaction on a transmembrane substrate and an aldehyde inhibitor. Extensive gate opening accompanied substrate, but not inhibitor, binding, revealing that substrates and inhibitors take different paths to the active site. Catalysis unexpectedly commenced with, and was guided through subsequent catalytic steps by, motions of an extracellular loop, with local contributions from active site residues. We even captured the elusive tetrahedral intermediate that is uncleaved but covalently attached to the catalytic serine, around which the substrate was forced to bend dramatically. This unexpectedly stable intermediate indicates rhomboid catalysis uses an unprecedented reaction coordinate that may involve mechanically stressing the peptide bond, and could be selectively targeted by inhibitors. 2019-09-30 2019-10 /pmc/articles/PMC6858540/ /pubmed/31570873 http://dx.doi.org/10.1038/s41594-019-0296-9 Text en Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Cho, Sangwoo Baker, Rosanna P. Ji, Ming Urban, Siniša Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release |
title | Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release |
title_full | Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release |
title_fullStr | Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release |
title_full_unstemmed | Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release |
title_short | Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release |
title_sort | ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858540/ https://www.ncbi.nlm.nih.gov/pubmed/31570873 http://dx.doi.org/10.1038/s41594-019-0296-9 |
work_keys_str_mv | AT chosangwoo tencatalyticsnapshotsofrhomboidintramembraneproteolysisfromgateopeningtopeptiderelease AT bakerrosannap tencatalyticsnapshotsofrhomboidintramembraneproteolysisfromgateopeningtopeptiderelease AT jiming tencatalyticsnapshotsofrhomboidintramembraneproteolysisfromgateopeningtopeptiderelease AT urbansinisa tencatalyticsnapshotsofrhomboidintramembraneproteolysisfromgateopeningtopeptiderelease |