Cargando…
Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease
Immune-mediated diseases (IMDs) arise when tolerance is lost and chronic inflammation is targeted towards healthy tissues. Despite their growing prevalence, therapies to treat IMDs are lacking. Cytokines and their receptors orchestrate inflammatory responses by regulating elaborate signalling networ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859431/ https://www.ncbi.nlm.nih.gov/pubmed/31276585 http://dx.doi.org/10.1093/hmg/ddz155 |
_version_ | 1783471117792444416 |
---|---|
author | McGowan, Lucy M Davey Smith, George Gaunt, Tom R Richardson, Tom G |
author_facet | McGowan, Lucy M Davey Smith, George Gaunt, Tom R Richardson, Tom G |
author_sort | McGowan, Lucy M |
collection | PubMed |
description | Immune-mediated diseases (IMDs) arise when tolerance is lost and chronic inflammation is targeted towards healthy tissues. Despite their growing prevalence, therapies to treat IMDs are lacking. Cytokines and their receptors orchestrate inflammatory responses by regulating elaborate signalling networks across multiple cell types making it challenging to pinpoint therapeutically relevant drivers of IMDs. We developed an analytical framework that integrates Mendelian randomization (MR) and multiple-trait colocalization (moloc) analyses to highlight putative cell-specific drivers of IMDs. MR evaluated causal associations between the levels of 10 circulating cytokines and 9 IMDs within human populations. Subsequently, we undertook moloc analyses to assess whether IMD trait, cytokine protein and corresponding gene expression are driven by a shared causal variant. Moreover, we leveraged gene expression data from three separate cell types (monocytes, neutrophils and T cells) to discern whether associations may be attributed to cell type-specific drivers of disease. MR analyses supported a causal role for IL-18 in inflammatory bowel disease (IBD) (P = 1.17 × 10(−4)) and eczema/dermatitis (P = 2.81 × 10(−3)), as well as associations between IL-2rα and IL-6R with several other IMDs. Moloc strengthened evidence of a causal association for these results, as well as providing evidence of a monocyte and neutrophil-driven role for IL-18 in IBD pathogenesis. In contrast, IL-2rα and IL-6R associations were found to be T cell specific. Our analytical pipeline can help to elucidate putative molecular pathways in the pathogeneses of IMDs, which could be applied to other disease contexts. |
format | Online Article Text |
id | pubmed-6859431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-68594312019-11-21 Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease McGowan, Lucy M Davey Smith, George Gaunt, Tom R Richardson, Tom G Hum Mol Genet General Article Immune-mediated diseases (IMDs) arise when tolerance is lost and chronic inflammation is targeted towards healthy tissues. Despite their growing prevalence, therapies to treat IMDs are lacking. Cytokines and their receptors orchestrate inflammatory responses by regulating elaborate signalling networks across multiple cell types making it challenging to pinpoint therapeutically relevant drivers of IMDs. We developed an analytical framework that integrates Mendelian randomization (MR) and multiple-trait colocalization (moloc) analyses to highlight putative cell-specific drivers of IMDs. MR evaluated causal associations between the levels of 10 circulating cytokines and 9 IMDs within human populations. Subsequently, we undertook moloc analyses to assess whether IMD trait, cytokine protein and corresponding gene expression are driven by a shared causal variant. Moreover, we leveraged gene expression data from three separate cell types (monocytes, neutrophils and T cells) to discern whether associations may be attributed to cell type-specific drivers of disease. MR analyses supported a causal role for IL-18 in inflammatory bowel disease (IBD) (P = 1.17 × 10(−4)) and eczema/dermatitis (P = 2.81 × 10(−3)), as well as associations between IL-2rα and IL-6R with several other IMDs. Moloc strengthened evidence of a causal association for these results, as well as providing evidence of a monocyte and neutrophil-driven role for IL-18 in IBD pathogenesis. In contrast, IL-2rα and IL-6R associations were found to be T cell specific. Our analytical pipeline can help to elucidate putative molecular pathways in the pathogeneses of IMDs, which could be applied to other disease contexts. Oxford University Press 2019-10-01 2019-06-18 /pmc/articles/PMC6859431/ /pubmed/31276585 http://dx.doi.org/10.1093/hmg/ddz155 Text en © The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | General Article McGowan, Lucy M Davey Smith, George Gaunt, Tom R Richardson, Tom G Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease |
title | Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease |
title_full | Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease |
title_fullStr | Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease |
title_full_unstemmed | Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease |
title_short | Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease |
title_sort | integrating mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease |
topic | General Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859431/ https://www.ncbi.nlm.nih.gov/pubmed/31276585 http://dx.doi.org/10.1093/hmg/ddz155 |
work_keys_str_mv | AT mcgowanlucym integratingmendelianrandomizationandmultipletraitcolocalizationtouncovercellspecificinflammatorydriversofautoimmuneandatopicdisease AT daveysmithgeorge integratingmendelianrandomizationandmultipletraitcolocalizationtouncovercellspecificinflammatorydriversofautoimmuneandatopicdisease AT gaunttomr integratingmendelianrandomizationandmultipletraitcolocalizationtouncovercellspecificinflammatorydriversofautoimmuneandatopicdisease AT richardsontomg integratingmendelianrandomizationandmultipletraitcolocalizationtouncovercellspecificinflammatorydriversofautoimmuneandatopicdisease |