Cargando…
Passing through Open/Closed Doors: A Solution for 3D Scanning Robots
In this article, a traversing door methodology for building scanning mobile platforms is proposed. The problem of passing through open/closed doors entails several actions that can be implemented by processing 3D information provided by dense 3D laser scanners. Our robotized platform, denominated as...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864753/ https://www.ncbi.nlm.nih.gov/pubmed/31683691 http://dx.doi.org/10.3390/s19214740 |
Sumario: | In this article, a traversing door methodology for building scanning mobile platforms is proposed. The problem of passing through open/closed doors entails several actions that can be implemented by processing 3D information provided by dense 3D laser scanners. Our robotized platform, denominated as MoPAD (Mobile Platform for Autonomous Digitization), has been designed to collect dense 3D data and generate basic architectural models of the interiors of buildings. Moreover, the system identifies the doors of the room, recognises their respective states (open, closed or semi-closed) and completes the aforementioned 3D model, which is later integrated into the robot global planning system. This document is mainly focused on describing how the robot navigates towards the exit door and passes to a contiguous room. The steps of approaching, door-handle recognition/positioning and handle–robot arm interaction (in the case of a closed door) are shown in detail. This approach has been tested using our MoPAD platform on the floors of buildings composed of several rooms in the case of open doors. For closed doors, the solution has been formulated, modeled and successfully tested in the Gazebo robot simulation tool by using a 4DOF robot arm on board MoPAD. The excellent results yielded in both cases lead us to believe that our solution could be implemented/adapted to other platforms and robot arms. |
---|