Cargando…

Higher estimated net endogenous acid production with lower intake of fruits and vegetables based on a dietary survey is associated with the progression of chronic kidney disease

BACKGROUND: Dietary acid load has been suggested to mediate the progression of chronic kidney disease (CKD). However, it is unclear what kinds of foods are actually associated with dietary acid load in patients with CKD. The self-administered diet history questionnaire (DHQ), which semi-quantitative...

Descripción completa

Detalles Bibliográficos
Autores principales: Toba, Koji, Hosojima, Michihiro, Kabasawa, Hideyuki, Kuwahara, Shoji, Murayama, Toshiko, Yamamoto-Kabasawa, Keiko, Kaseda, Ryohei, Wada, Eri, Watanabe, Reiko, Tanabe, Naohito, Suzuki, Yoshiki, Narita, Ichiei, Saito, Akihiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868769/
https://www.ncbi.nlm.nih.gov/pubmed/31752746
http://dx.doi.org/10.1186/s12882-019-1591-8
Descripción
Sumario:BACKGROUND: Dietary acid load has been suggested to mediate the progression of chronic kidney disease (CKD). However, it is unclear what kinds of foods are actually associated with dietary acid load in patients with CKD. The self-administered diet history questionnaire (DHQ), which semi-quantitatively assesses the dietary habits of Japanese individuals through 150 question items, can estimate average daily intake of various foods and nutrients during the previous month. Using the DHQ, we investigated the association of dietary acid load with CKD progression. We also analyzed the kinds of food that significantly affect dietary acid load. METHODS: Subjects were 96 outpatients with CKD (average estimated glomerular filtration rate [eGFR], 53.0 ± 18.1 ml/min/1.73 m(2)) at Niigata University Hospital, who had completed the DHQ in 2011. We calculated net endogenous acid production (NEAP) from potassium and protein intake evaluated by the DHQ in order to assess dietary acid load. CKD progression was assessed by comparing eGFR between 2008 and 2014. RESULTS: NEAP was not correlated with protein intake (r = 0.088, p = 0.398), but was negatively correlated with potassium intake (r = − 0.748, p < 0.001). Reduction in eGFR from 2008 to 2014 was estimated to be significantly greater in patients with higher NEAP (NEAP > 50.1 mEq/day, n = 45) than in those with lower NEAP (NEAP ≤50.1 mEq/day, n = 50) by 5.9 (95% confidence interval [95%CI], 0.1 to 11.6) ml/min/1.73 m(2). According to multiple logistic regression analysis, higher NEAP was significantly associated with lower intake of fruits (odds ratio [OR], 6.454; 95%CI, 2.19 to 19.00), green and yellow vegetables (OR, 5.18; 95%CI, 1.83 to14.66), and other vegetables (OR, 3.87; 95%CI, 1.29 to 11.62). CONCLUSIONS: Elevated NEAP could be a risk factor for CKD progression. Low intake of fruits and vegetables would increase dietary acid load and might affect the progression of renal dysfunction in Japanese CKD patients.