Cargando…
Optogenetic control of Cofilin and αTAT in living cells using Z-lock
Here we introduce Z-lock, an optogenetic approach for reversible, light-controlled steric inhibition of protein active sites. The LOV domain and Zdk, a small protein that binds LOV selectively in the dark, are appended to the protein of interest where they sterically block the active site. Irradiati...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873228/ https://www.ncbi.nlm.nih.gov/pubmed/31740825 http://dx.doi.org/10.1038/s41589-019-0405-4 |
Sumario: | Here we introduce Z-lock, an optogenetic approach for reversible, light-controlled steric inhibition of protein active sites. The LOV domain and Zdk, a small protein that binds LOV selectively in the dark, are appended to the protein of interest where they sterically block the active site. Irradiation causes LOV to change conformation and release Zdk, exposing the active site. Computer-assisted protein design was used to optimize linkers and Zdk-LOV affinity, for both effective binding in the dark, and effective light-induced release of the intramolecular interaction. Z-lock cofilin was shown to have actin severing ability in vitro, and in living cancer cells it produced protrusions and invadopodia. An active fragment of the tubulin acetylase αTAT was similarly modified and shown to acetylate tubulin upon irradiation. |
---|