Cargando…
ImaGene: a convolutional neural network to quantify natural selection from genomic data
BACKGROUND: The genetic bases of many complex phenotypes are still largely unknown, mostly due to the polygenic nature of the traits and the small effect of each associated mutation. An alternative approach to classic association studies to determining such genetic bases is an evolutionary framework...
Autores principales: | Torada, Luis, Lorenzon, Lucrezia, Beddis, Alice, Isildak, Ulas, Pattini, Linda, Mathieson, Sara, Fumagalli, Matteo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873651/ https://www.ncbi.nlm.nih.gov/pubmed/31757205 http://dx.doi.org/10.1186/s12859-019-2927-x |
Ejemplares similares
-
ImaGene: a web-based software platform for tumor radiogenomic evaluation and reporting
por: Sukhadia, Shrey S, et al.
Publicado: (2022) -
Spliceator: multi-species splice site prediction using convolutional neural networks
por: Scalzitti, Nicolas, et al.
Publicado: (2021) -
MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
por: Müller, Dominik, et al.
Publicado: (2021) -
Intelligent fluorescence image analysis of giant unilamellar vesicles using convolutional neural network
por: Lee, Il-Hyung, et al.
Publicado: (2022) -
Accurate plant pathogen effector protein classification ab initio with deepredeff: an ensemble of convolutional neural networks
por: Kristianingsih, Ruth, et al.
Publicado: (2021)