Cargando…

Histone deacetylase inhibitors with high in vitro activities against Plasmodium falciparum isolates collected from Gabonese children and adults

Histone deacetylase (HDAC) enzymes are targets for the development of antimalarial drugs with a different mode of action to established antimalarials. Broad-spectrum HDAC-inhibitors show high potency against Plasmodium falciparum, but displayed some toxicity towards human cells. Inhibitors of human...

Descripción completa

Detalles Bibliográficos
Autores principales: Koehne, Erik, Kreidenweiss, Andrea, Zoleko Manego, Rella, McCall, Matthew, Mombo-Ngoma, Ghyslain, Mackwitz, Marcel Karl Walter, Hansen, Finn K., Held, Jana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874535/
https://www.ncbi.nlm.nih.gov/pubmed/31758015
http://dx.doi.org/10.1038/s41598-019-53912-w
Descripción
Sumario:Histone deacetylase (HDAC) enzymes are targets for the development of antimalarial drugs with a different mode of action to established antimalarials. Broad-spectrum HDAC-inhibitors show high potency against Plasmodium falciparum, but displayed some toxicity towards human cells. Inhibitors of human HDAC6 are new drug candidates with supposed reduced toxicity to human cells and favorable activities against laboratory P. falciparum strains. We investigated the potency of 12 peptoid-based HDAC-inhibitors against asexual stages of P. falciparum clinical isolates. Parasites representing different genetic backgrounds were isolated from adults and children with uncomplicated malaria in Gabon. Clinical studies on (non-HDAC-inhibitors) antimalarials, moreover, found lower drug efficacy in children, mainly attributed to acquired immunity with age in endemic areas. Therefore, we compared the in vitro sensitivity profiles of adult- and child-derived isolates to antimalarials (HDAC and standard drugs). All HDAC-inhibitors showed 50% inhibitory concentrations at nanomolar ranges with higher activities than the FDA approved reference HDAC-inhibitor SAHA. We propose peptoid-based HDAC6-inhibitors to be lead structures for further development as antimalarial chemotherapeutics. Our results further suggest no differences in activity of the tested antimalarials between P. falciparum parasites isolated from children and adults.