Cargando…
A framework for identification of on- and off-target transcriptional responses to drug treatment
Owing to safety concerns or insufficient efficacy, few drug candidates are approved for marketing. Drugs already on the market may be withdrawn due to adverse effects (AEs) discovered after market introduction. Comprehensively investigating the on-/off-target effects of drugs can help expose AEs dur...
Autores principales: | Huang, Yi, Furuno, Masaaki, Arakawa, Takahiro, Takizawa, Satoshi, de Hoon, Michiel, Suzuki, Harukazu, Arner, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879629/ https://www.ncbi.nlm.nih.gov/pubmed/31772269 http://dx.doi.org/10.1038/s41598-019-54180-4 |
Ejemplares similares
-
xcore: an R package for inference of gene expression regulators
por: Migdał, Maciej, et al.
Publicado: (2023) -
ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation
por: Umarov, Ramzan, et al.
Publicado: (2021) -
Genome-scale regression analysis reveals a linear relationship for promoters and enhancers after combinatorial drug treatment
por: Rapakoulia, Trisevgeni, et al.
Publicado: (2017) -
C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution
por: Kouno, Tsukasa, et al.
Publicado: (2019) -
DeepCellState: An autoencoder-based framework for predicting cell type specific transcriptional states induced by drug treatment
por: Umarov, Ramzan, et al.
Publicado: (2021)