Cargando…

Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB

PdxB (erythronate 4-phosphate dehydrogenase) is expected to be required for synthesis of the essential cofactor pyridoxal 5′-phosphate (PLP) in Escherichia coli. Surprisingly, incubation of the ∆pdxB strain in medium containing glucose as a sole carbon source for 10 d resulted in visible turbidity,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Juhan, Flood, Jake J., Kristofich, Michael R., Gidfar, Cyrus, Morgenthaler, Andrew B., Fuhrer, Tobias, Sauer, Uwe, Snyder, Daniel, Cooper, Vaughn S., Ebmeier, Christopher C., Old, William M., Copley, Shelley D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883840/
https://www.ncbi.nlm.nih.gov/pubmed/31712440
http://dx.doi.org/10.1073/pnas.1915569116
_version_ 1783474454038315008
author Kim, Juhan
Flood, Jake J.
Kristofich, Michael R.
Gidfar, Cyrus
Morgenthaler, Andrew B.
Fuhrer, Tobias
Sauer, Uwe
Snyder, Daniel
Cooper, Vaughn S.
Ebmeier, Christopher C.
Old, William M.
Copley, Shelley D.
author_facet Kim, Juhan
Flood, Jake J.
Kristofich, Michael R.
Gidfar, Cyrus
Morgenthaler, Andrew B.
Fuhrer, Tobias
Sauer, Uwe
Snyder, Daniel
Cooper, Vaughn S.
Ebmeier, Christopher C.
Old, William M.
Copley, Shelley D.
author_sort Kim, Juhan
collection PubMed
description PdxB (erythronate 4-phosphate dehydrogenase) is expected to be required for synthesis of the essential cofactor pyridoxal 5′-phosphate (PLP) in Escherichia coli. Surprisingly, incubation of the ∆pdxB strain in medium containing glucose as a sole carbon source for 10 d resulted in visible turbidity, suggesting that PLP is being produced by some alternative pathway. Continued evolution of parallel lineages for 110 to 150 generations produced several strains that grow robustly in glucose. We identified a 4-step bypass pathway patched together from promiscuous enzymes that restores PLP synthesis in strain JK1. None of the mutations in JK1 occurs in a gene encoding an enzyme in the new pathway. Two mutations indirectly enhance the ability of SerA (3-phosphoglycerate dehydrogenase) to perform a new function in the bypass pathway. Another disrupts a gene encoding a PLP phosphatase, thus preserving PLP levels. These results demonstrate that a functional pathway can be patched together from promiscuous enzymes in the proteome, even without mutations in the genes encoding those enzymes.
format Online
Article
Text
id pubmed-6883840
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-68838402019-12-04 Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB Kim, Juhan Flood, Jake J. Kristofich, Michael R. Gidfar, Cyrus Morgenthaler, Andrew B. Fuhrer, Tobias Sauer, Uwe Snyder, Daniel Cooper, Vaughn S. Ebmeier, Christopher C. Old, William M. Copley, Shelley D. Proc Natl Acad Sci U S A Biological Sciences PdxB (erythronate 4-phosphate dehydrogenase) is expected to be required for synthesis of the essential cofactor pyridoxal 5′-phosphate (PLP) in Escherichia coli. Surprisingly, incubation of the ∆pdxB strain in medium containing glucose as a sole carbon source for 10 d resulted in visible turbidity, suggesting that PLP is being produced by some alternative pathway. Continued evolution of parallel lineages for 110 to 150 generations produced several strains that grow robustly in glucose. We identified a 4-step bypass pathway patched together from promiscuous enzymes that restores PLP synthesis in strain JK1. None of the mutations in JK1 occurs in a gene encoding an enzyme in the new pathway. Two mutations indirectly enhance the ability of SerA (3-phosphoglycerate dehydrogenase) to perform a new function in the bypass pathway. Another disrupts a gene encoding a PLP phosphatase, thus preserving PLP levels. These results demonstrate that a functional pathway can be patched together from promiscuous enzymes in the proteome, even without mutations in the genes encoding those enzymes. National Academy of Sciences 2019-11-26 2019-11-11 /pmc/articles/PMC6883840/ /pubmed/31712440 http://dx.doi.org/10.1073/pnas.1915569116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Kim, Juhan
Flood, Jake J.
Kristofich, Michael R.
Gidfar, Cyrus
Morgenthaler, Andrew B.
Fuhrer, Tobias
Sauer, Uwe
Snyder, Daniel
Cooper, Vaughn S.
Ebmeier, Christopher C.
Old, William M.
Copley, Shelley D.
Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB
title Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB
title_full Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB
title_fullStr Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB
title_full_unstemmed Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB
title_short Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB
title_sort hidden resources in the escherichia coli genome restore plp synthesis and robust growth after deletion of the essential gene pdxb
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883840/
https://www.ncbi.nlm.nih.gov/pubmed/31712440
http://dx.doi.org/10.1073/pnas.1915569116
work_keys_str_mv AT kimjuhan hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT floodjakej hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT kristofichmichaelr hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT gidfarcyrus hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT morgenthalerandrewb hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT fuhrertobias hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT saueruwe hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT snyderdaniel hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT coopervaughns hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT ebmeierchristopherc hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT oldwilliamm hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb
AT copleyshelleyd hiddenresourcesintheescherichiacoligenomerestoreplpsynthesisandrobustgrowthafterdeletionoftheessentialgenepdxb