Cargando…

Simultaneous measurement of p53:Mdm2 and p53:Mdm4 protein-protein interactions in whole cells using fluorescence labelled foci

In this report we describe the development of a Fluorescent Protein-Protein Interaction-visualization (FLUOPPI) to enable the simultaneous measurement of both Mdm2:p53 and Mdm4:p53 interactions in order to assess the relative efficiencies of mimetic molecules of the p53 peptide helix against both PP...

Descripción completa

Detalles Bibliográficos
Autores principales: Frosi, Y., Inoue, K., Ramlan, Siti Radhiah, Lane, D. P., Watanabe, T., Brown, C. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884555/
https://www.ncbi.nlm.nih.gov/pubmed/31784573
http://dx.doi.org/10.1038/s41598-019-54123-z
Descripción
Sumario:In this report we describe the development of a Fluorescent Protein-Protein Interaction-visualization (FLUOPPI) to enable the simultaneous measurement of both Mdm2:p53 and Mdm4:p53 interactions in order to assess the relative efficiencies of mimetic molecules of the p53 peptide helix against both PPIs. Mdm2 and Mdm4 overexpression frequently leads to the inactivation of non-mutated p53 in human cancers, via inhibition of its transcriptional activity, enhancing its degradation by the proteasome or by preventing its nuclear import. Development of inhibitors to disrupt the binding of one or both of these protein interactions have been the subject of intensive pharmaceutical development for anti-cancer therapies. Using the bimodal FLUOPPI system we have characterised compounds that were either monospecific for Mdm2 or bispecific for both Mdm2 and Mdm4. We have also demonstrated that the FLUOPPI assay can reliably differentiate between specific and non-specific disruption of these protein complexes via accurate assessment and normalization to the cell population under measurement. We envision that this methodology will increase the efficiency of identifying compounds that are either specific against a single PPI from a closely related family of interactions or compounds that interact across multiple related PPI pairs, depending on which is more desirable.