Cargando…

Long noncoding RNA MEG3 suppresses podocyte injury in diabetic nephropathy by inactivating Wnt/β-catenin signaling

BACKGROUND: Diabetic nephropathy (DN) is one of the principal complications of diabetes and podocyte injury plays an important role in the DN pathogenesis. Wnt/β-catenin signaling overactivation confers podocyte injury and promotes multiple types of renal disease. However, the underlying mechanism o...

Descripción completa

Detalles Bibliográficos
Autores principales: Che, Xiajing, Deng, Xin, Xie, Kewei, Wang, Qin, Yan, Jiayi, Shao, Xinghua, Ni, Zhaohui, Ying, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885352/
https://www.ncbi.nlm.nih.gov/pubmed/31799068
http://dx.doi.org/10.7717/peerj.8016
Descripción
Sumario:BACKGROUND: Diabetic nephropathy (DN) is one of the principal complications of diabetes and podocyte injury plays an important role in the DN pathogenesis. Wnt/β-catenin signaling overactivation confers podocyte injury and promotes multiple types of renal disease. However, the underlying mechanism of Wnt/β-catenin signaling activation in DN progression has not been fully elucidated. Long noncoding RNA (lncRNA) is a large class of endogenous RNA molecules lacking functional code capacity and which participates in the pathogenesis of human disease, including DN. METHOD: A diabetes model was constructed by intraperitoneal injection of Streptozotocin in rats. The MPC5 cells were used to create the in vitro model. Western blot and Quantitative reverse-transcriptase-PCR were used to examine the expression of protein and mRNA. The migrated capacity was analyzed by Transwell migration assay. The cell viability was detected by CCK8. RESULTS: In the present study, we revealed the association of lncRNA Maternally Expressed Gene 3 (MEG3) with aberrant activation of Wnt/β-catenin signaling and the role of MEG3/Wnt axis in podocyte injury. We found that high glucose (HG) treatment suppressed MEG3 expression in cultured podocytes, activated Wnt/β-catenin signaling and caused podocyte injury as indicated by the downregulation of podocyte-specific markers (podocin and synaptopodin) and the upregulation of snail1 and α-smooth muscle actin. Overexpression of MEG3 attenuated HG-induced podocyte injury by reducing Wnt/β-catenin activity, repressing cell migration, reactive oxygen species production and increasing the viability of podocytes. Furthermore, we provided evidences that restoration of Wnt/β-catenin signaling by specific agonist impeded the protective effect of MEG3 on podocyte injury. Current results demonstrated that MEG3/Wnt axis plays an important role in fostering podocyte injury and may serve as a potential therapeutic target for the treatment of DN. CONCLUSION: lncRNA MEG3 ameliorates podocyte injury in DN via inactivating Wnt/β-catenin signaling.