Cargando…
Joint between-sample normalization and differential expression detection through ℓ(0)-regularized regression
BACKGROUND: A fundamental problem in RNA-seq data analysis is to identify genes or exons that are differentially expressed with varying experimental conditions based on the read counts. The relativeness of RNA-seq measurements makes the between-sample normalization of read counts an essential step i...
Autores principales: | Liu, Kefei, Shen, Li, Jiang, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886201/ https://www.ncbi.nlm.nih.gov/pubmed/31787074 http://dx.doi.org/10.1186/s12859-019-3070-4 |
Ejemplares similares
-
Efficient Regularized Regression with L
(0) Penalty for Variable Selection and Network Construction
por: Liu, Zhenqiu, et al.
Publicado: (2016) -
Joint regression and classification via relational regularization for Parkinson’s disease diagnosis
por: Lei, Haijun, et al.
Publicado: (2018) -
An Adaptive Ridge Procedure for L(0) Regularization
por: Frommlet, Florian, et al.
Publicado: (2016) -
Robust priors for regularized regression
por: Bobadilla-Suarez, Sebastian, et al.
Publicado: (2022) -
Analysis of genotype by methylation interactions through sparsity-inducing regularized regression
por: Zhou, Wenda, et al.
Publicado: (2018)