Cargando…
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement
Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of mitochondrial tricarboxylic ac...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888669/ https://www.ncbi.nlm.nih.gov/pubmed/31744143 http://dx.doi.org/10.3390/ijms20225774 |
_version_ | 1783475283726172160 |
---|---|
author | Lazzarino, Giacomo Amorini, Angela Maria Signoretti, Stefano Musumeci, Giuseppe Lazzarino, Giuseppe Caruso, Giuseppe Pastore, Francesco Saverio Di Pietro, Valentina Tavazzi, Barbara Belli, Antonio |
author_facet | Lazzarino, Giacomo Amorini, Angela Maria Signoretti, Stefano Musumeci, Giuseppe Lazzarino, Giuseppe Caruso, Giuseppe Pastore, Francesco Saverio Di Pietro, Valentina Tavazzi, Barbara Belli, Antonio |
author_sort | Lazzarino, Giacomo |
collection | PubMed |
description | Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of mitochondrial tricarboxylic acid cycle (TCA). TBI was induced in anaesthetized rats by dropping 450 g from 1 (mTBI) or 2 m height (sTBI). After 6 h, 12 h, 24 h, 48 h, and 120 h gene expressions of enzymes and subunits of PDH. PDH kinases and phosphatases (PDK1-4 and PDP1-2, respectively), citrate synthase (CS), isocitrate dehydrogenase (IDH), oxoglutarate dehydrogenase (OGDH), succinate dehydrogenase (SDH), succinyl-CoA synthase (SUCLG), and malate dehydrogenase (MDH) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). In the same samples, the high performance liquid chromatographic (HPLC) determination of acetyl-coenzyme A (acetyl-CoA) and free coenzyme A (CoA-SH) was performed. Sham-operated animals (n = 6) were used as controls. After mTBI, the results indicated a general transient decrease, followed by significant increases, in PDH and TCA gene expressions. Conversely, permanent PDH and TCA downregulation occurred following sTBI. The inhibitory conditions of PDH (caused by PDP1-2 downregulations and PDK1-4 overexpression) and SDH appeared to operate only after sTBI. This produced almost no change in acetyl-CoA and free CoA-SH following mTBI and a remarkable depletion of both compounds after sTBI. These results again demonstrated temporary or steady mitochondrial malfunctioning, causing minimal or profound modifications to energy-related metabolites, following mTBI or sTBI, respectively. Additionally, PDH and SDH appeared to be highly sensitive to traumatic insults and are deeply involved in mitochondrial-related energy metabolism imbalance. |
format | Online Article Text |
id | pubmed-6888669 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68886692019-12-09 Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement Lazzarino, Giacomo Amorini, Angela Maria Signoretti, Stefano Musumeci, Giuseppe Lazzarino, Giuseppe Caruso, Giuseppe Pastore, Francesco Saverio Di Pietro, Valentina Tavazzi, Barbara Belli, Antonio Int J Mol Sci Article Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of mitochondrial tricarboxylic acid cycle (TCA). TBI was induced in anaesthetized rats by dropping 450 g from 1 (mTBI) or 2 m height (sTBI). After 6 h, 12 h, 24 h, 48 h, and 120 h gene expressions of enzymes and subunits of PDH. PDH kinases and phosphatases (PDK1-4 and PDP1-2, respectively), citrate synthase (CS), isocitrate dehydrogenase (IDH), oxoglutarate dehydrogenase (OGDH), succinate dehydrogenase (SDH), succinyl-CoA synthase (SUCLG), and malate dehydrogenase (MDH) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). In the same samples, the high performance liquid chromatographic (HPLC) determination of acetyl-coenzyme A (acetyl-CoA) and free coenzyme A (CoA-SH) was performed. Sham-operated animals (n = 6) were used as controls. After mTBI, the results indicated a general transient decrease, followed by significant increases, in PDH and TCA gene expressions. Conversely, permanent PDH and TCA downregulation occurred following sTBI. The inhibitory conditions of PDH (caused by PDP1-2 downregulations and PDK1-4 overexpression) and SDH appeared to operate only after sTBI. This produced almost no change in acetyl-CoA and free CoA-SH following mTBI and a remarkable depletion of both compounds after sTBI. These results again demonstrated temporary or steady mitochondrial malfunctioning, causing minimal or profound modifications to energy-related metabolites, following mTBI or sTBI, respectively. Additionally, PDH and SDH appeared to be highly sensitive to traumatic insults and are deeply involved in mitochondrial-related energy metabolism imbalance. MDPI 2019-11-16 /pmc/articles/PMC6888669/ /pubmed/31744143 http://dx.doi.org/10.3390/ijms20225774 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lazzarino, Giacomo Amorini, Angela Maria Signoretti, Stefano Musumeci, Giuseppe Lazzarino, Giuseppe Caruso, Giuseppe Pastore, Francesco Saverio Di Pietro, Valentina Tavazzi, Barbara Belli, Antonio Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement |
title | Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement |
title_full | Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement |
title_fullStr | Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement |
title_full_unstemmed | Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement |
title_short | Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement |
title_sort | pyruvate dehydrogenase and tricarboxylic acid cycle enzymes are sensitive targets of traumatic brain injury induced metabolic derangement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888669/ https://www.ncbi.nlm.nih.gov/pubmed/31744143 http://dx.doi.org/10.3390/ijms20225774 |
work_keys_str_mv | AT lazzarinogiacomo pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement AT amoriniangelamaria pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement AT signorettistefano pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement AT musumecigiuseppe pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement AT lazzarinogiuseppe pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement AT carusogiuseppe pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement AT pastorefrancescosaverio pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement AT dipietrovalentina pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement AT tavazzibarbara pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement AT belliantonio pyruvatedehydrogenaseandtricarboxylicacidcycleenzymesaresensitivetargetsoftraumaticbraininjuryinducedmetabolicderangement |