Cargando…

Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import

Natural resistance-associated macrophage protein (Nramp) transporters enable uptake of essential transition metal micronutrients in numerous biological contexts. These proteins are believed to function as secondary transporters that harness the electrochemical energy of proton gradients by “coupling...

Descripción completa

Detalles Bibliográficos
Autores principales: Bozzi, Aaron T., Bane, Lukas B., Zimanyi, Christina M., Gaudet, Rachelle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888756/
https://www.ncbi.nlm.nih.gov/pubmed/31619456
http://dx.doi.org/10.1085/jgp.201912428
_version_ 1783475303874560000
author Bozzi, Aaron T.
Bane, Lukas B.
Zimanyi, Christina M.
Gaudet, Rachelle
author_facet Bozzi, Aaron T.
Bane, Lukas B.
Zimanyi, Christina M.
Gaudet, Rachelle
author_sort Bozzi, Aaron T.
collection PubMed
description Natural resistance-associated macrophage protein (Nramp) transporters enable uptake of essential transition metal micronutrients in numerous biological contexts. These proteins are believed to function as secondary transporters that harness the electrochemical energy of proton gradients by “coupling” proton and metal transport. Here we use the Deinococcus radiodurans (Dra) Nramp homologue, for which we have determined crystal structures in multiple conformations, to investigate mechanistic details of metal and proton transport. We untangle the proton-metal coupling behavior of DraNramp into two distinct phenomena: ΔpH stimulation of metal transport rates and metal stimulation of proton transport. Surprisingly, metal type influences substrate stoichiometry, leading to manganese-proton cotransport but cadmium uniport, while proton uniport also occurs. Additionally, a physiological negative membrane potential is required for high-affinity metal uptake. To begin to understand how Nramp’s structure imparts these properties, we target a conserved salt-bridge network that forms a proton-transport pathway from the metal-binding site to the cytosol. Mutations to this network diminish voltage and ΔpH dependence of metal transport rates, alter substrate selectivity, perturb or eliminate metal-stimulated proton transport, and erode the directional bias favoring outward-to-inward metal transport under physiological-like conditions. Thus, this unique salt-bridge network may help Nramp-family transporters maximize metal uptake and reduce deleterious back-transport of acquired metals. We provide a new mechanistic model for Nramp proton-metal cotransport and propose that functional advantages may arise from deviations from the traditional model of symport.
format Online
Article
Text
id pubmed-6888756
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-68887562020-06-02 Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import Bozzi, Aaron T. Bane, Lukas B. Zimanyi, Christina M. Gaudet, Rachelle J Gen Physiol Research Articles Natural resistance-associated macrophage protein (Nramp) transporters enable uptake of essential transition metal micronutrients in numerous biological contexts. These proteins are believed to function as secondary transporters that harness the electrochemical energy of proton gradients by “coupling” proton and metal transport. Here we use the Deinococcus radiodurans (Dra) Nramp homologue, for which we have determined crystal structures in multiple conformations, to investigate mechanistic details of metal and proton transport. We untangle the proton-metal coupling behavior of DraNramp into two distinct phenomena: ΔpH stimulation of metal transport rates and metal stimulation of proton transport. Surprisingly, metal type influences substrate stoichiometry, leading to manganese-proton cotransport but cadmium uniport, while proton uniport also occurs. Additionally, a physiological negative membrane potential is required for high-affinity metal uptake. To begin to understand how Nramp’s structure imparts these properties, we target a conserved salt-bridge network that forms a proton-transport pathway from the metal-binding site to the cytosol. Mutations to this network diminish voltage and ΔpH dependence of metal transport rates, alter substrate selectivity, perturb or eliminate metal-stimulated proton transport, and erode the directional bias favoring outward-to-inward metal transport under physiological-like conditions. Thus, this unique salt-bridge network may help Nramp-family transporters maximize metal uptake and reduce deleterious back-transport of acquired metals. We provide a new mechanistic model for Nramp proton-metal cotransport and propose that functional advantages may arise from deviations from the traditional model of symport. Rockefeller University Press 2019-12-02 2019-10-16 /pmc/articles/PMC6888756/ /pubmed/31619456 http://dx.doi.org/10.1085/jgp.201912428 Text en © 2019 Bozzi et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Research Articles
Bozzi, Aaron T.
Bane, Lukas B.
Zimanyi, Christina M.
Gaudet, Rachelle
Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import
title Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import
title_full Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import
title_fullStr Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import
title_full_unstemmed Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import
title_short Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import
title_sort unique structural features in an nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888756/
https://www.ncbi.nlm.nih.gov/pubmed/31619456
http://dx.doi.org/10.1085/jgp.201912428
work_keys_str_mv AT bozziaaront uniquestructuralfeaturesinannrampmetaltransporterimpartsubstratespecificprotoncotransportandakineticbiastofavorimport
AT banelukasb uniquestructuralfeaturesinannrampmetaltransporterimpartsubstratespecificprotoncotransportandakineticbiastofavorimport
AT zimanyichristinam uniquestructuralfeaturesinannrampmetaltransporterimpartsubstratespecificprotoncotransportandakineticbiastofavorimport
AT gaudetrachelle uniquestructuralfeaturesinannrampmetaltransporterimpartsubstratespecificprotoncotransportandakineticbiastofavorimport